

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Cell ExplorerTM Live Cell Tracking Kit

Blue Fluorescence

Ordering Information	Storage Conditions	Instrument Platform
Product Number: 22620 (2 plates)	Keep in freezer	Fluorescence microscope
	Protect from moisture and light	Flow Cytometer

Introduction

Our Cell ExplorerTM Live Cell labeling kits are a set of tools used to label cells for fluorescence microscopic investigations of cellular functions. The effective labeling of cells provides a powerful method for studying cellular events in a spatial and temporal context.

This particular kit is designed to uniformly label live cells in blue fluorescence for the studies that require the fluorescent tag molecules retained inside cells for a relatively longer time. The kit uses a non-fluorescent dye that carries a cell-retaining moiety. The dye becomes strongly fluorescent upon entering into live cells, and is trapped inside cells to give stable fluorescence signals. The dye is a hydrophobic compound that easily permeates intact live cells. The labeling process is robust, requiring minimal hands-on time. This Cell ExplorerTM Live Cell labeling kit can be readily adapted for many different types of fluorescence platforms such as microplate assays, flow cytometry and fluorescence microscope. It is useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. The kit provides all the essential components with an optimized cell-labeling protocol, and can be used for both proliferating and non-proliferating cells (either suspension or adherent cells).

Kit Components

Components	Amount
Component A: Track It™ Blue	2 vials
Component B: DMSO	1 vial (0.2 mL)
Component C: Assay Buffer	1 bottle (20 mL)

Assay Protocol

Brief Summary

Prepare samples \rightarrow Remove the cell plate from incubator \rightarrow Add 10 μ L/well of 10X Track ItTM Blue working solution \rightarrow Stain the cells at RT for 15 minutes to 1 hour \rightarrow Wash the cells \rightarrow Examine the specimen under microscope at Ex/Em = 360/445 nm

Note: Thaw all the components to room temperature before opening.

1. Prepare Cells:

- 1.1 For adherent cells: Plate cells overnight in growth medium at 10,000 to 40,000 cells/well/90 μ L for 96-well plates or 2,500 to 10,000 cells/well/20 μ L for 384-well plates.
- 1.2 For non-adherent cells: Centrifuge the cells from the culture medium and then suspend the cell pellets in culture medium at 50,000-100,000 cells/well/90 μ L for 96-well poly-D lysine plates or 10,000-25,000 cells/well/20 μ L for 384-well poly-D lysine plates. Centrifuge the plates at 800 rpm for 2 minutes with brake off prior to the experiment.

Note: Each cell line should be evaluated on an individual basis to determine the optimal cell density.

2. Prepare Track ItTM Blue stain solution:

2.1 Prepare 2 mM Track ItTM Blue stock solution: Add 25 μL of DMSO (Component B) into one of the Track ItTM Blue vials (Component A) to make 2 mM stock solution.

Note: The unused portion of the Track ItTM stock solution should be stored at -20 °C. Avoid repeated

freeze/thaw cycles.

2.2 Prepare 10X Track ItTM Blue working solution: Dilute 2 mM of Track ItTM Blue_stock solution (from Step 2.1) into Assay Buffer (Component C) to make 5 to 50 μM Track ItTM Blue working solution. The working solution should be prepared enough for all the wells at 10 μL/well with the appropriate concentration. For example, to get Track ItTM Blue at the final concentration of 20 μM for one 96-well microplate, dilute 10 μL of the Track ItTM Blue stock solution into 1 mL of Assay Buffer (Component C) to make 1 mL of 20 μM (10X) Track ItTM Blue working solution.

Note1: The final concentration of the Track ItTM Blue should be empirically determined for different cell types and/or experimental conditions. It is recommended to test at the concentrations that are at least over a ten fold range.

Note 2: We found that 2 uM final in well concentration is sufficient for most of cell lines.

3. Stain the cells:

- 3.1 To the cell wells add 10X Track ItTM Blue working solution (from Step 2.2), which should be equal to 1/10 of the volume of cell culture medium. For example, for a 96-well plate, add 10 μL/well of 10X Track ItTM Blue working solution into the cells.
- 3.2 Incubate the cells in a 37 $^{\circ}$ C, 5% CO₂ incubator for 15 min to 1 hour.
- 3.3 Wash cells with Hanks and 20 mM Hepes buffer (HHBS) or an appropriate buffer.
- 3.4 Fill the cell wells with growth medium.
- 3.5 Analyze the cells using a fluorescence microscope or flow cytometer with DAPI filter sets (Ex/Em = 360/445 nm).

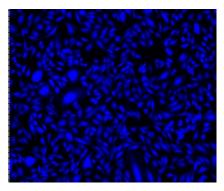


Figure 1. Image of U2OS cells stained with 2 μ M Cell ExplorerTM Live Cell Tracking Kit *Blue Fluorescence* in a Costar black wall/clear bottom 96-well plate.

References

- 1. Wolff M, Wiedenmann J, Nienhaus GU, Valler M, Heilker R. (2006) Novel fluorescent proteins for high-content screening. Drug Discov Today, 11, 1054.
- 2. Lee S, Howell BJ. (2006) High-content screening: emerging hardware and software technologies. Methods Enzymol, 414, 468.
- 3. Haasen D, Schnapp A, Valler MJ, Heilker R. (2006) G protein-coupled receptor internalization assays in the high-content screening format. Methods Enzymol, 414, 121.

Warning: This kit is only sold to end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest. Chemical analysis of the kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you have any questions.