

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

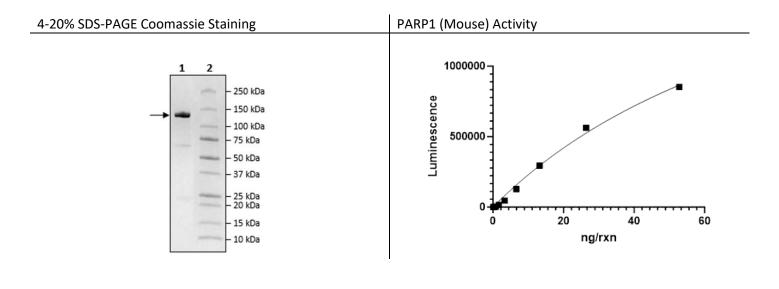
Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

PARP1 (Mouse), GST-Tag Recombinant


Product Information

Description:	Recombinant mouse PARP1 (poly-(ADP-ribose) polymerase 1), full-length,
	encompassing amino acids 2-1014(end). This construct contains an N-terminal GST-tag
	followed by a Thrombin Cleavage Site. The recombinant protein was affinity purified.
Background:	PARP1, also known as poly-(ADP-ribose) polymerase 1 or NAD ⁺ ADP-ribosyltransferase
	1, is part of the PARP family, and it is the most abundant member. ADP ribosylation,
	which is the addition of an ADP-ribose to a protein, is a reversible post-translational
	modification of proteins mostly involved in the DNA Damage Response (DDR) pathway.
	Poly-ADP-ribosylation (termed PARylation) is the addition of linear or branched chains
	of ADP-ribose. PARP1 participates in DNA repair by non-homologous end joining (NHEJ),
	homologous recombination (HR), microhomology-mediated end-joining (MMEJ) and
	nucleotide excision repair. Dysfunction of DDR pathways can lead to oncogenesis.
	Overexpression of PARP1 has been found in breast and colon cancer, neuroblastoma,
	and others. This overexpression can lead to increasing MMEJ, an error-prone DNA
	repair mechanism, and genome instability leading to cancer. In addition to being
	involved in DDR, PARP1 is also linked to inflammation and type I diabetes. PARP1
	inhibitors have been used in cancer treatment with success. In addition to reducing
	MMEJ, the use of PARP1 inhibitors can lead to synthetic lethality when homologous
	recombination repair (HRR) mechanisms are already defective, as in the case of BRCA1
	(breast cancer susceptibility protein type 1) and BRCA2 deficient cells. Further
	understanding of the molecular pathways involving PARP1, and its contribution to
	disease, will continue to pave the way for new therapies for PARP1-linked diseases.
Species:	Mouse
Construct:	PARP1 (GST-Th-2-1014(end))
Concentration:	0.68 mg/ml
Expression System:	Sf9
Purity:	≥90%
Format:	Aqueous buffer solution.
Formulated In:	40 mM Tris-HCl pH 8.0, 110 mM NaCl, 2.2 mM KCl, 20% glycerol, and 1 mM glutathione
MW:	139 kDa
Genbank Accession:	NM_007415.3
Stability:	At least 6 months at -80°C.
Storage:	-80°C
Instructions for Use:	Thaw on ice and gently mix prior to use. DO NOT VORTEX. Perform a quick spin before
	opening. Aliquot into small volumes and flash freeze for long term storage. Avoid
	multiple freeze/thaw cycles.
Assay Conditions:	Assay was done according to PARP1 Chemiluminescent Assay Kit (BPS Bioscience
	#80551) with various amounts of PARP1.
Applications:	Useful for the study of enzyme kinetics, screening inhibitors, and selectivity profiling.

PARP1 (Mouse), GST-Tag Recombinant

Quality Control Data

