

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

6042 Cornerstone Court W, Ste B San Diego, CA 92121

Tel: 1.858.829.3082 **Fax:** 1.858.481.8694

Email: info@bpsbioscience.com

Data Sheet

EZH1 Chemiluminescent Assay Kit

Catalog #52990 Size: 384 reactions

DESCRIPTION: The *EZH1 Chemiluminescent Assay Kit* is designed to measure activity of the EZH1 complex (EZH1/EED/SUZ12/RbAp48/ AEBP) for screening and profiling purposes. The *EZH1 Chemiluminescent Assay Kit* comes in a convenient format, with wells precoated with histone H3 peptide substrate, an antibody against methylated K27 residue of Histone H3, the secondary HRP-labeled antibody, S-adenosylmethionine, methyltransferase assay buffer, and purified EZH1 complex for 384 enzyme reactions. The key to the EZH1 Assay Kit is a highly specific antibody that recognizes methylated Histone H3K27. With this kit, only three simple steps on a microtiter plate are required for methyltransferase detection. First, S-adenosylmethionine is incubated with a sample containing assay buffer and methyltransferase enzyme for two hours. Next, primary antibody is added. Finally, the plate is treated with an HRP-labeled secondary antibody followed by addition of the HRP substrate to produce chemiluminescence that can then be measured using a chemiluminescence reader.

COMPONENTS:

Catalog #	Component	Amount	Sto	rage
51007	EZH1/EED/SUZ12/RbAp48/AEBP2	200 μg	-80°C	
	250 μM S-adenosylmethionine	4x250 μl	-80°C	
52140F	Primary Antibody 6	25 µl	-80°C	
52131H	Secondary HRP-labeled Antibody 2	20 µl	-80°C	
52170	4x HMT Assay Buffer 2	2x3 ml	-20°C	Avoid
52100-B	Blocking Buffer	2x50 ml	+4°C	freeze/
	HRP chemiluminescent substrate A	2x6 ml	+4°C	thaw
	(translucent bottle)			cycles!
	HRP chemiluminescent substrate B (brown bottle)	2x6 ml	+4°C	
	384-well plate precoated with histone substrate	1 plate	+4°C	

6042 Cornerstone Court W, Ste B

San Diego, CA 92121 Tel: 1.858.829.3082 Fax: 1.858.481.8694

Email: info@bpsbioscience.com

MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED:

TBST buffer (1x Tris-buffered saline, pH 8.0, containing 0.05% Tween-20) Luminometer or fluorescent microplate reader capable of reading chemiluminescence Rotating or rocker platform

APPLICATIONS: Great for studying enzyme kinetics and HTS applications.

STABILITY: One year from date of receipt when stored as directed.

REFERENCES: 1. Dillon, S.C., et al. Genome Biology 2005; 6:227.

2. Morin, R.D., et al. Nat Genet. 2010; 42(2):181.

ASSAY PROTOCOL:

All samples and controls should be tested in duplicate.

Step 1:

- 1) Rehydrate the microwells by adding 90 µl of TBST buffer (1x TBS, pH 8.0, containing 0.05% Tween-20) to every well. Incubate 15 minutes at room temperature. Tap the plate onto clean paper towels to remove liquid.
- 2) Thaw **S-adenosylmethionine** on ice. Upon first thaw, briefly spin tube containing **S-adenosylmethionine** to recover full content of the tube. Aliquot **S-adenosylmethionine** in aliquots at -80°C immediately. Note: S-adenosylmethionine is very sensitive to freeze/thaw cycles. Avoid multiple freeze-thaw cycles.
- 3) Prepare the master mixture: N wells \times (7.5 μ l **4× HMT Assay Buffer 2** + 2 μ l **250 \muM S-adenosylmethionine** + 15.5 μ l **H₂O**)

	Blank	Substrate	Positive	Test Inhibitor
		Control	Control	Inhibitor
4x HMT assay Buffer 2	7.5 µl	7.5 µl	7.5 µl	7.5 µl
250 µM S-adenosylmethionine	2 µl	_	2 µl	2 µl
H ₂ O	15.5 µl	17.5 µl	15.5 µl	15.5 µl
Test Inhibitor/Activator	-	_	1	5 µl
Inhibitor buffer (no inhibitor)	5 µl	5 µl	5 µl	ı
1x HMT assay Buffer 2	20 µl	_	1	1
EZH1 (25 ng/μl)	_	20 µl	20 µl	20 μΙ
Total	50 µl	50 μl	50 µl	50 μl

6042 Cornerstone Court W, Ste B San Diego, CA 92121

Tel: 1.858.829.3082 Fax: 1.858.481.8694

Email: info@bpsbioscience.com

- 4) Add 25 μ l of master mixture to each well designated for the "Positive Control", "Test Inhibitor", and "Blank". For the "Substrate Control", add 7.5 μ l **4× HMT Assay Buffer 2 +** 17.5 μ l **H**₂**O**
- 5) Add 5 μ l of inhibitor solution of each well designated "Test Inhibitor". For the "Positive Control", "Substrate Control" and "Blank", add 5 μ l of the same solution without inhibitor (inhibitor buffer).
- 6) Add 20 μl of **1 x HMT assay Buffer 2** to the well designated "Blank".
- 7) Thaw **EZH1 enzyme** on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Aliquot **EZH1 enzyme** into single use aliquots. Store remaining undiluted enzyme in aliquots at -80°C immediately. Note: **EZH1 enzyme** is very sensitive to freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.
- 8) Dilute **EZH1 enzyme** in **1× HMT assay Buffer 2** at 25 ng/μl (500 ng/20 μl). Keep diluted enzyme on ice until use. Discard any unused diluted enzyme after use.
- 9) Initiate reaction by adding 20 µl of diluted **EZH1 enzyme** prepared as described above. Incubate at room temperature for two hours.
- 10) Wash the wells three times with 90 µl TBST buffer. Blot dry onto clean paper towels.
- 11) Add 50 μl of **Blocking Buffer** to every well. Shake on a rotating platform for 10 min. Remove supernatant as described above.

Step 2:

- 1) Dilute **Primary Antibody 6** 800-fold with **Blocking Buffer**.
- 2) Add 50 µl per well. Incubate 1 hour at room temperature with slow shaking.
- 3) Wash the strips three times with TBST buffer and incubate in **Blocking Buffer** as described in steps 1-10 and 1-11.

Step 3:

- 1) Dilute Secondary HRP-labeled antibody 2 1,000-fold with Blocking Buffer.
- 2) Add 50 µl per well. Incubate for 30 min. at room temperature with slow shaking.

6042 Cornerstone Court W, Ste B San Diego, CA 92121

Tel: 1.858.829.3082 **Fax:** 1.858.481.8694

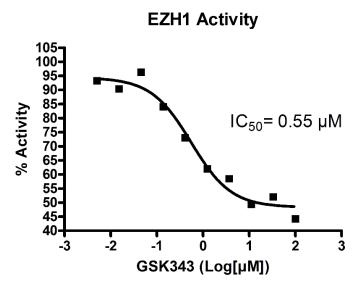
Email: info@bpsbioscience.com

- 3) Wash the wells with TBST buffer and incubate in **Blocking Buffer** as described in step 1-10 and 1-11.
- 4) Just before use, mix on ice 25 μ l HRP chemiluminescent substrate A and 25 μ l HRP chemiluminescent substrate B and add 50 μ l per well. Discard any unused chemiluminescent reagent after use.
- 5) Immediately read sample in a luminometer or microtiter-plate capable of reading chemiluminescence. "Blank" value is subtracted from all readings.

Reading Chemiluminescence:

Chemiluminescence is the emission of light (luminescence) which results from a chemical reaction. The detection of chemiluminescence requires no wavelength selection because the method used is emission photometry and is not emission spectrophotometry.

To properly read chemiluminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader are: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence of a control assay without enzyme (typically we set this value as 100).



6042 Cornerstone Court W, Ste B

San Diego, CA 92121 Tel: 1.858.829.3082 Fax: 1.858.481.8694

Email: info@bpsbioscience.com

Example of Assay Results:

EZH1 enzyme activity, measured using the *EZH1 Chemiluminescent Assay Kit*, BPS Bioscience #52990 Luminescence was measured using a Bio-Tek fluorescent microplate reader. *Data shown is lot-specific. For lot-specific information, please contact BPS Bioscience, Inc. at info@bpsbioscience.com.*

RELATED PRODUCTS

Product Name	Catalog #	<u>Size</u>
EZH1/EED/SUZ12/RbAp48/AEBP2	51007	50 µg
EZH2/EED/SUZ12/RbAp48/AEBP2	51004	50 µg
EZH1/EED/SUZ12	51006	50 µg
EZH2 (Y641F)/EED/SUZ12/RbAp48/AEBP2	51017	20 µg
EZH2 (Y641C)/EED/SUZ12/RbAp48/AEBP2	51029	20 µg
EZH2 (Y641N)/EED/SUZ12/RbAp48/AEBP2	51028	20 µg
EZH2 (Y641S)/EED/SUZ12/RbAp48/AEBP2	51013	20 µg
EZH2 (Y641H)/EED/SUZ12/RbAp48/AEBP2	51011	20 µg
EZH1 Chemiluminescent Assay Kit	52079	96 rxns.
EZH2 Chemiluminescent Assay Kit	52009L	96 rxns.
EZH2 (Y641F) Chemiluminescent Assay Kit	52075	96 rxns.
EZH2 (Y641N) Chemiluminescent Assay Kit	52076	96 rxns.
EZH2 WT Chemiluminescent Assay Kit	52067	96 rxns.
EZH2 Homogeneous Assay Kit	52059	384 rxns.
EZH2 (Y641N) TR-FRET Assay Kit	52078	384 rxns.

6042 Cornerstone Court W, Ste B San Diego, CA 92121 **Tel:** 1.858.829.3082

Fax: 1.858.481.8694
Email: info@bpsbioscience.com

TROUBLESHOOTING GUIDE

Problem	Possible Cause	Solution
Luminescence signal of		Enzyme loses activity upon repeated
positive control reaction is	activity	freeze/thaw cycles. Use fresh EZH1, BPS
weak	douvity	Bioscience #51007. Store enzyme in
Would		single-use aliquots. Increase time of
		enzyme incubation. Increase enzyme
		concentration.
	Antibody reaction is	Increase time for primary antibody
	insufficient	incubation. Avoid freeze/thaw cycles of
		antibodies.
	Incorrect settings on	Refer to instrument instructions for settings
	instruments	to increase sensitivity of light detection.
		See section on "Reading
		Chemiluminescence" above.
	Chemiluminescent	Chemiluminescent solution should be
	reagents mixed too soon	used within 15 minutes of mixing. Ensure
		both reagents are properly mixed.
Luminescent signal is	Inaccurate	Run duplicates of all reactions.
erratic or varies widely	pipetting/technique	Use a multichannel pipettor.
among wells		Use master mixes to minimize errors.
	Bubbles in wells	Pipette slowly to avoid bubble formation.
		Tap plate lightly to disperse bubbles; be
		careful not to splash between wells.
Background (signal to	Insufficient washes	Be sure to include blocking steps after
noise ratio) is high		wash steps. Increase number of washes.
		Increase wash volume.
		Increase Tween-20 concentration to 0.1%
		in TBST.
	Sample solvent is	Run negative control assay including
	inhibiting the enzyme	solvent. Maintain DMSO level at <1%
		Increase time of enzyme incubation.
	Results are outside the	Use different concentrations of EZH1
	linear range of the assay	Complex, BPS #51007 to create a
		standard curve.