

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

<u>Datasheet</u> Anti-CD19 CAR / NFAT (Luciferase) Reporter Jurkat Cell Line (CD19 SCFV-CD28-4-1BB-CD3ζ) Catalog #: 79853

Product Description

The anti-CD19 CAR/NFAT-luciferase reporter Jurkat cell line is a double stable cell line expressing anti-CD19 CAR and NFAT-luciferase reporter. It is made from the anti-CD19 CAR lentivirus (BPS Bioscience #79851). The reporter cell line has been validated for anti CD19-CAR expression by FACS, and for luciferase reporter activation stimulated by target cells including CD19/CHO recombinant cell line and Raji cells with endogenous CD19 expression. The reporter cell line can be used for primary screening and functional validation of anti-CD19 CAR construct and lentivirus before testing in primary T cells.

The anti-CD19 CAR consists of anti-CD19 scFv linked to 3rd generation CAR (Chimeric Antigen Receptor) containing CD28, 4-1BB co-stimulatory domains, and CD3ζ signaling domain.

Background

The development of CAR T-cells is a complex process that requires multiple components in the workflow including I) screening and sequencing of mAbs that are specific to the cancer antigens; II) engineering and validation of scFv and scFv-CAR of different varieties for their specificities and activities; III) production of high titer lentivirus for CAR constructs; IV) isolation, activation and expansion of primary T cells from healthy donors or patients that exhibit a specific cellular phenotype; V) transduction of activated T cells with CAR-encoding lentivirus; V) validation of engineered CAR-T cells through FACS and functional analysis.

BPS Bioscience has developed a series of CAR-T products, including lentiviruses, reporter cell lines and fully validated functional CAR T-cells for a variety of targets such as CD19 and BCMA. In this product, anti-CD19 CAR and NFAT-luciferase reporter are co-transfected into a Jurkat cell line, where binding of CD19 to anti-CD19 scFv leads to the activation of CAR and luciferase reporter through NFAT. Anti-CD19 scFv linked to 3rd generation CAR (CD28 transmembrane and costimulatory domains, 4-1BB, and CD3 ζ components) was cloned into a lentivector, and packaged using a safe, replication incompetent, VSV-G pseudotyped lentiviral packaging system, in which the gene of anti-CD19 CAR is driven by an EF-1 α promotor. The anti-CD19 CAR reporter Jurkat cell line was generated by transducing the anti-CD19 CAR lentivirus into an NFAT-luciferase reporter Jurkat cell line. In these cells, the luciferase reporter is activated upon co-culture with CD19/CHO target cells (BPS Bioscience #79561), or Raji cells with endogenous CD19 expression. The anti-CD19 CAR /NFAT-luciferase reporter Jurkat cell line is a great system for primary screening of anti-CD19 CAR and predicting its mechanism of action before

testing on patient-derived primary T cells. The same anti-CD19 CAR lentivirus was also used to transduce primary T cells to make primary anti-CD19-CAR T-cells, which showed IFN- γ production and cytotoxic killing of CD19+ tumor cells in co-culture experiments, indicating that there is a good correlation between the reporter activity in CAR reporter Jurkat cell line and functional activation of primary CAR T cells when co-cultured with target cells.

Application

- Validate different CAR designs and constructs for their specificity, efficacy and potency before proceeding into patient-derived primary T cells.
- Predict the Mechanism of Action (MOA) of CAR.
- Intracellular co-stimulatory and activation domain comparison.
- Compound and Ab screening for modulation of CAR signaling pathways.
- Screen and validate CD19-expressing target cells for antigen-specific CAR activation.
- Proof of concept studies for primary CAR T-cells.

Host Cell

NFAT-luciferase reporter Jurkat cells (BPS Bioscience #60621)

Format

Each vial contains 2 x 10⁶ cells in 1 ml of 10% DMSO and 90% FBS

Storage

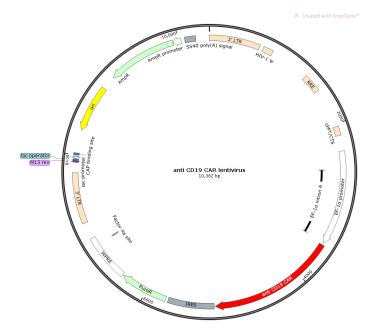
Immediately upon receipt, store in liquid nitrogen.

Mycoplasma Testing

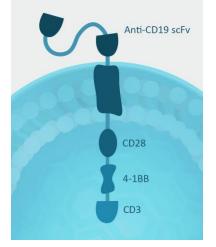
The cell line has been screened using the PCR-based Venor[®]GeM Mycoplasma Detection kit (Sigma-Aldrich, #MP0025) to confirm the absence of *Mycoplasma* species.

General Cell Culture Conditions:

Thaw Medium 2 (BPS Bioscience, #60184): RPMI 1640 medium (Thermo Fisher, #A1049101) supplemented with 10% FBS (Thermo Fisher, #26140079), 1% Penicillin/Streptomycin (Hyclone #SV30010.01).


Growth Medium 2H (BPS Bioscience, #79784): Thaw Medium 2, plus 1 µg/ml puromycin (InvivoGen # ant-pr-1) and 1 mg/ml of Geneticin (Thermo Fisher, #11811031).

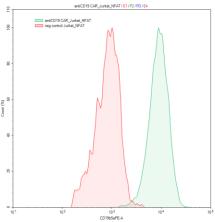
Quickly thaw the frozen cells from liquid nitrogen in a 37° C water-bath, then transfer the entire contents of the vial to a tube containing 10 ml of Thaw Medium 2 (no Geneticin or puromycin). Spin down the cells, remove supernatant and resuspend cells in 5 ml pre-warmed Thaw Medium 2 (no Geneticin or puromycin). Transfer the resuspended cells to a T25 flask and incubate at 37° C in a 5% CO₂ incubator. At first passage, switch to complete Growth Medium



2H (contains Geneticin and puromycin). Passage the cells at 1:10 ratio twice a week when cells are more than 2×10^6 cells/ml. We recommend storing at least 10 or more vials of cells at an early passage.

Figure 1. Lenti-vector used to generate the anti-CD19 CAR lentivirus

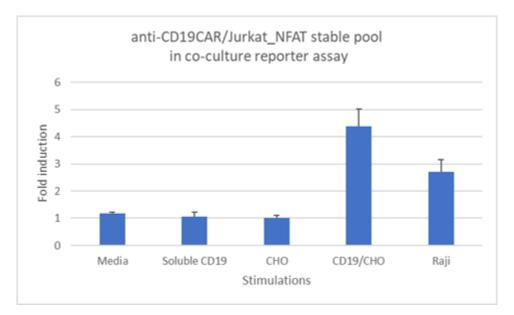
Figure 2. Schematic of anti-CD19 CAR The anti-CD19 (scFv) is linked to the 3rd generation CAR with CD28 transmembrane and costimulatory domains, 4-1BB, and CD3ζ components.



Materials Required but Not Supplied

- CHO-K1 cell line (ATCC), target cell CD19/CHO stable cell line (BPS Bioscience #79561), or Raji cells (ATCC, CCL-86).
- Thaw Medium 3 (BPS Bioscience #60186): Ham's F-12 medium (Hyclone # SH30526.01) supplemented with 10% FBS (Thermo Fisher, #26140079), 1% Penicillin/Streptomycin (Hyclone #SV30010.01).
- Growth Medium 3D (BPS Bioscience #79539): Thaw Medium 3 plus 1 mg/ml Geneticin (Thermo Fisher, #11811031).
- NFAT-luciferase reporter Jurkat cell line (BPS Bioscience #60621)
- Thaw Medium 2 (BPS Bioscience #60184): RPMI 1640 medium (Thermo Fisher, #A1049101) supplemented with 10% FBS (Thermo Fisher, #26140079), 1% Penicillin/Streptomycin (Hyclone #SV30010.01).
- Growth Medium 2H (BPS Bioscience #79784): Thaw Medium 2 plus 1 µg/ml puromycin and 1 mg/ml of Geneticin.
- 96-well tissue culture treated white clear-bottom assay plate (Corning #3610)
- One-Step luciferase assay system (BPS Bioscience #60690)
- Luminometer

Functional Validation and Assay Performance:


Figure 3. Expression of anti-CD19 CAR in NFAT-luciferase reporter Jurkat cell line was confirmed by FACS.

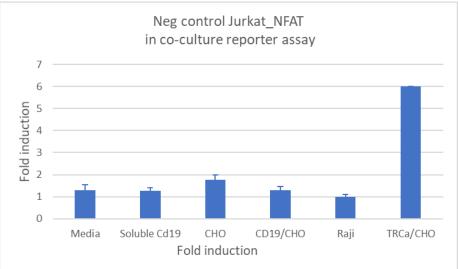

Anti-CD19 CAR expression was measured using biotinylated human CD19 protein (BPS Bioscience #79467) and phycoerythrin (PE)-conjugated streptavidin (Biolegend, #405203). The cells were then analyzed on a NovoCyte flow cytometer.

Figure 4. Anti-CD19 CAR NFAT reporter stable cell line activity stimulated by CD19: WT CHO control cells didn't show activation, however, both CD19/CHO recombinant cell line and Raji cells with endogenous CD19 expression caused an increase of luciferase activity in the anti-CD19 CAR NFAT Jurkat reporter cells.

Figure 5. The negative control NFAT/Jurkat reporter cell line did not respond to CD19/CHO or Raji cells. It only responded to TCRa/CHO cells by directly activating the endogenous TCR on Jurkat cells.

Related Products	<u>Cat. #</u>	Size
CD19, Fc Fusion, Biotin labeled	79475	25 µg
CD19/CHO stable cell line	79561	2 vials
CD19/Firefly luciferase-CHO double stable cell line	79714	2 vials
anti-CD19 CAR lentivirus	79851	2 vials
Colorimetric Human IFN-y Detection Kit	79777	96 rxns.
ONE-Step™ Luciferase Detection Reagent	60690-1	10 ml
NFAT-luc reporter Jurkat cell line	60621	2 vials
CD4+ T cells, Negatively Selected (Human)	79752	10^6 cells
CD8+ T cells, Negatively Selected (Human)	79753	10^6 cells
Thaw Medium 2	60184	100 ml
Thaw Medium 3	60186	100 ml
Thaw Medium 10	79704	100 ml
Growth Medium 2B	79530	500 ml
Growth Medium 3A	60188	500 ml
Growth Medium 3D	79539	500 ml

References

- 1. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. Wang et al. J Hematol Oncol. 2019 Jun 11;**12(1):**59-78.
- 2. Chimeric antigen receptor T cell therapy for multiple myeloma. Hasegawa *et al. Inflamm Regen.* 2019 Jun 4;**39:**10-14.
- 3. Novel targets for the treatment of relapsing multiple myeloma. Giuliani *et al. Expert Rev Hematol.* 2019 Jun **3:**1-16.
- 4. Anti-CD19 antibodies in the future management of multiple myeloma. Gavriatopoulou *et al. Expert Rev Anticancer Ther.* 2019 Apr;**19(4):**319-326.