

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

Description

The Chemi-Verse™ PIM1 Kinase Assay Kit is designed to measure PIM1 (Proviral Integration of Molony murine leukemia virus 1) serine/threonine kinase activity for screening and profiling applications using ADP-Glo™ as a detection reagent. The assay kit comes in a convenient 96-well format, with enough purified PIM1, kinase substrate, ATP, and kinase assay buffer for 100 enzyme reactions.

Background

PIM kinases (Proviral Integration of Molony murine leukemia virus), PIM1, PIM2 and PIM3, are a family of serine/threonine protein kinases that play crucial roles in cell survival, proliferation, and drug resistance. PIM kinases are overexpressed in several tumors and promote growth and survival of malignant cells through cell cycle regulation and/or inhibition of apoptosis. PIM1 has two isoforms that differ in length and localization, with the short isoform being found in the nucleus and the longer one in the plasma membrane. This protein is constitutively active, stabilized by phosphorylation. It is normally found in the thymus, spleen, bone marrow, fetal liver, and lymphocytes. It sits at a crosspoint of multiple pathways, being the effector in response to several cytokine activated pathways and acting on several proteins. In T cells, PIM1 enables cells to bypass the TCR (T cell receptor) checkpoint and enhance NFAT (nuclear factor of activated T-cells) activity and IL-2 secretion. High levels of PIM1 can be found in many cancer types, such as hematological disorders and prostate cancer. In triple-negative breast cancer, PIM-1 is a coactivator of Myc, phosphorylates histone H3 leading to stimulation of RNA polymerase II binding, and increased c-Myc driven transcription. The use of PIM1 inhibitors in cancer treatment, as monotherapy, has focused on using ATP competitive or mimetic molecules. The development of new inhibitors to be used in mono- or combinatory therapy will continue to expand the repertoire of tools available in cancer therapy.

Applications

Study enzyme kinetics and screen small molecule inhibitors for drug discovery and high throughput screening (HTS) applications.

Supplied Materials

Catalog #	Name	Amount	Storage
41107	PIM1, GST-Tag*	5 μg	-80°C
79334	5x Kinase Buffer 1	1.5 ml	-20°C
79686	500 μM ATP	50 μΙ	-20°C
79884	S6Ktide (10 mg/ml)	50 μΙ	-20°C
82545	White 96-well plate	1	Room Temperature

^{*}The concentration of the protein is lot-specific and will be indicated on the tube.

Materials Required but Not Supplied

Name	Ordering Information
ADP-Glo™ Kinase Assay	Promega #V6930
DTT (Dithiothreitol), 1M, optional	
Microplate reader capable of reading luminescence	
Adjustable micropipettor and sterile tips	
30°C incubator	

Storage Conditions

This assay kit will perform optimally for up to **6 months** from date of receipt when the materials are stored as directed.

Safety

This product is for research purposes only and not for human or therapeutic use. This product should be considered hazardous and is harmful by inhalation, in contact with skin, eyes, clothing, and if swallowed. If contact occurs, wash thoroughly.

Assay Principle

The ADP-Glo™ Kinase Assay (Promega #V6930) quantifies the amount of ADP produced by a kinase upon phosphorylation of a substrate. First, addition of the ADP-Glo™ reagent terminates the reaction and quenches the remaining ATP. Second, the addition of the Kinase Detection reagent converts the produced ADP to ATP. The newly generated ATP is quantified by a luciferase reaction. The luminescent signal correlates with the amount of ADP generated by the kinase and is linear to 1 mM ATP.

Contraindications

The final concentration of DMSO in the assay should not exceed 1%.

Assay Protocol

- All samples and controls should be tested in duplicate.
- The assay should include "Blank", "Positive Control" and "Test Inhibitor" conditions.
- We recommend maintaining the diluted protein on ice during use.
- For detailed information on protein handling please refer to Protein FAQs (bpsbioscience.com).
- We recommend using AZD1208 (#82562) or Staurosporine (#27002) as internal control. If not running a
 dose response curve for the control inhibitor, we recommend running the control inhibitor at 0.1X, 1X and
 10X the IC₅₀ value shown in the validation data below.
- For instructions on how to prepare reagent dilutions please refer to Serial Dilution Protocol (bpsbioscience.com).
- 1. Thaw 5x Kinase Assay Buffer 1, 500 μM ATP, and S6Ktide (10 mg/ml).

Optional: If desired, make 5x Kinase Assay Buffer 1 with 10 mM DTT.

- 2. Prepare 3 ml of 1x Kinase Assay Buffer 1 by mixing 600 μl of 5x Kinase Assay Buffer 1 with 2,400 μl of distilled water.
 - Note: Three (3 ml) of **1x Kinase Assay Buffer 1** is sufficient for 100 reactions.
- 3. Prepare a **Master Mix** (12.5 μ l/well): N wells x (6 μ l of 5x Kinase Assay Buffer 1 + 0.5 μ l of 500 μ M ATP + 0.5 μ l of S6Ktide (10 mg/ml) + 5.5 μ l of distilled water).
- 4. Add 12.5 μl of Master Mix to every well.
- 5. Prepare the **Test Inhibitor** (2.5 μ l/well): for a titration prepare serial dilutions at concentrations 10-fold higher than the desired final concentrations. The final volume of the reaction is 25 μ l.
 - 5.1 If the Test Inhibitor is water-soluble: Prepare serial dilutions in 1x Kinase Assay Buffer 1, 10-fold more concentrated than the desired final concentrations.

For the positive and negative controls, use 1x Kinase Assay Buffer 1 (Diluent Solution).

OR

5.2 If the Test inhibitor is soluble in DMSO: Prepare the test inhibitor at 100-fold the highest desired concentration in 100% DMSO, then dilute the inhibitor 10-fold in 1x Kinase Assay Buffer 1 to prepare the highest concentration of the 10-fold intermediate dilutions. The concentration of DMSO is now 10%.

Prepare serial dilutions of the Test Inhibitor at 10-fold the desired final concentrations using 10% DMSO in 1x Kinase Assay Buffer 1 to keep the concentration of DMSO constant.

For positive and negative controls, prepare 10% DMSO in 1x Kinase Assay Buffer 1 (vol/vol) so that all wells contain the same amount of DMSO (Diluent Solution).

Note: The final concentration of DMSO should not exceed 1%.

- 6. Add 2.5 µl of Test Inhibitor to each well labeled "Test Inhibitor".
- 7. Add 2.5 µl of Diluent Solution to the "Positive Control" and "Blank" wells.
- 8. Add 10 μl of 1x Kinase Assay Buffer 1 to the "Blank" wells.
- 9. Thaw **PIM1 Kinase** on ice. Briefly spin the tube to recover its full content.
- 10. Dilute the protein kinase (10 μ l/well) to 5 ng/ μ l with 1x Kinase Assay Buffer 1.
- 11. Initiate the reaction by adding 10 μ l of diluted kinase to the wells designated "Positive Control" and "Test Inhibitor".

Component	Blank	Positive Control	Test Inhibitor
Master Mix	12.5 μΙ	12.5 μΙ	12.5 μΙ
Test Inhibitor	-	-	2.5 μΙ
Diluent Solution	2.5 μΙ	2.5 μΙ	-
1x Kinase Assay Buffer 1	10 μΙ	-	-
Diluted PIM1 (5 ng/μl)	-	10 μΙ	10 μΙ
Total	25 μΙ	25 μΙ	25 μΙ

- 12. Incubate at 30°C for 45 minutes.
- 13. Thaw the ADP-Glo™ reagent.
- 14. At the end of the 45-minute reaction, add 25 μl of ADP-Glo™ reagent to each well.
- 15. Cover the plate with aluminum foil and incubate at Room Temperature (RT) for 45 minutes.
- 16. Thaw the Kinase Detection Reagent.
- 17. Add 50 µl of Kinase Detection reagent to each well.
- 18. Cover the plate with aluminum foil and incubate at RT for another 45 minutes.
- 19. Immediately read in a luminometer or a microplate reader capable of reading luminescence.
- 20. The "Blank" value is subtracted from all other readings.


Reading Luminescence

Luminescence is the emission of light resulting from a chemical reaction. The detection of luminescence requires no wavelength selection because the method used is emission photometry and not emission spectrophotometry.

To properly read luminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence of a control assay without enzyme (typically we set this value as 100).

Example Results

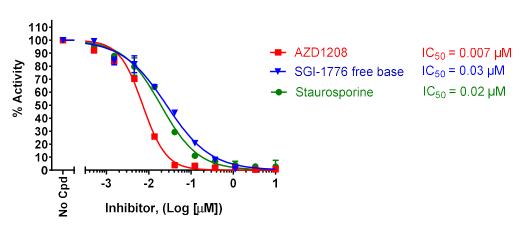


Figure 1: Inhibition of PIM1 kinase activity by the inhibitors AZD1208, SGI-1776 free base and Staurosporine.

PIM1 kinase activity was measured in the presence of increasing concentrations of AZD1208 (#82562), SGI-1776 free base (#27651) or Staurosporine (#27002). The "Blank" value was subtracted from all other values. Results are expressed as the percent of control (kinase activity in the absence of inhibitor, set at 100%).

Data shown is representative. For lot-specific information, please contact BPS Bioscience, Inc. at support@bpsbioscience.com.

Troubleshooting Guide

Visit bpsbioscience.com/assay-kits-faq for detailed troubleshooting instructions. For all further questions, please email support@bpsbioscience.com

References

Arrouchi H., et al., 2019 Bioinformation 15(1): 40-45.

Liu Z., et al., 2020 Am J Cancer Res 10(12): 4085-4097.

Jeyapal G. P., et al., 2018 Anticancer Agents Med Chem, 18(8): 1100-1114.

Asati V., et al., 2019 Eur J Med Chem., 172: 95-108.

Related Products

Products	Catalog #	Size
PIM2, GST-Tag Recombinant	40153	10 μg
PIM3, Active, GST-Tag Recombinant (Mouse)	41108	10 μg
PIM2 Assay Kit	79883	96 reactions
PIM3 Assay Kit	79886	96 reactions
SMI-4a	27774-1	10 mg

Version 061124

