

Duplic_{\alpha\text{RealTime}} **Next** *Trichomonas vaginalis* Kit

REV. EBR038032_IFU_REV.01D_ENITA

REF EBR038032 -32 tests

Instructions For Use

INTENDED USE

Duplic α^{RealTime} **Next** *Trichomonas vaginalis* **Kit** is an *in vitro* nucleic acid amplification test for the detection of *Trichomonas vaginalis* (TV), in human genomic DNA, extracted from clinical specimens.

INTRODUCTION

Trichomonas vaginalis (TV) is a protozoan parasite that commonly infects the genital tract of men and women. It is now considered to be the most common curable Sexually Transmitted Disease (STD) agent. The WHO has estimated that 160 million cases of infection are acquired annually worldwide. Although up to 70% of infected individuals are asymptomatic, infections may be associated with vaginitis, urethritis, and cervicitis in women, and urethritis and prostatitis in men. Patients that are infected with *Trichomonas vaginalis* have an increased risk of acquiring other sexually transmitted infections such as HIV, while infections in pregnant women are associated with premature labor, low-birth-weight offspring, premature rupture of membranes, and post-hysterectomy/post-abortion infection.

Symptoms of *Trichomonas vaginalis* overlap considerably with other sexually transmitted infections, and therefore laboratory diagnosis is required for definitive diagnosis.

PRINCIPLE OF THE TEST

Duplic α^{RealTime} **Next** *Trichomonas vaginalis* **Kit** is an assay for the DNA-based detection of the *Trichomonas vaginalis*. The kit is designed to amplify –tubulin (btub3) gene. The reagents for the amplification are ready-to-use and provided in 3 separate tubes:

- <u>AMPLIFICATION MIX</u>: with Hot Start Taq DNA polymerase, nucleotides, MgCl₂ and buffer.
- **OLIGO MIX:** with primers and fluorogenic probes.
- INTERNAL CONTROL OF AMPLIFICATION: to check the successful extraction and/or amplification process.

Duplic α^{RealTime} **Next Trichomonas vaginalis** it is based on specific recognition and amplification of target sequences by PCR, and the simultaneous detection of the accumulation of PCR amplification products by fluorescent DNA probes. The probe designed to detect the target carries the fluorophore FAM (6-carboxy-fluorescein) at the 5' end, while the probe detecting the internal control (IC), is labelled with the fluorophore HEX (hexa-chloro-fluorescein). Both the probes have a non fluorescent quencher at the 3' end. If excited, the whole probe doesn't emit fluorescence, since the proximity of the quencher to the reporter prevents the emission of the fluorescence from the reporter (quenching effect).

REAGENTS PROVIDED

Each kit contains enough reagents to perform 32 tests when used in 4 analytical sessions with 6 **samples** and 2 **controls** each or 5 **samples** and 3 **controls** each.

Kit Components

Reagent	Color Code	Storage (range, °C)	Volume (μl)	Quantity (tubes)
Oligo Mix (OM)*	Green Cap	-22÷-18	400	1
Amplification Mix (AM)	Blue Cap	-22÷-18	400	1
Control 1 (C1, Positive C.)	Red Cap	-22÷-18	>50	1
Control 2 (C2, Internal C.)**	Yellow Cap	-22÷-18	400	1
Reaction Blank (BM)***	White Cap	-22÷-18	1500	1

*protect the tube from direct light

** The Internal Control (C2) can be used as an Extraction/Amplification control (EAC) by adding it directly to the sample/lysis buffer mix during the DNA extraction procedure (for details see the paragraph "a) DNA purification" and refer to the specific protocol of the extraction kit) or as an Amplification Control by adding it directly to the PCR Mix (for details see the paragraph "c) PCR mix preparation")

*** Used both in the extraction procedure as an extraction negative control (ENC, see paragraph "a) DNA purification"), and in amplification as reaction blank (see the paragraph "c) Preparation of the PCR mix").

STORAGE AND HANDLING

All reagents must be stored at **-22÷-18°C** and can be used until the expiry date printed on the labels. Do not freeze and thaw the products more than six times.

MATERIAL REQUIRED BUT NOT PROVIDED

- Extraction kit for DNA purification (refer to the specific handbook's section)
- Optical tubes or microplate for Real Time PCR
- Disposable powder-free gloves and laboratory coat
- Variable volumes pipettes (5-20 μ l, 20-200 μ l and 100-1000 μ l)
- Disposable RNase/DNase-free tips with aerosol barriers
- Tube racks
- Vortex
- Desktop centrifuge
- PCR box
- Refrigerator
- Deep-freezer
- Thermalcycler for Real Time PCR

The kit has been developed to be used on Rotor-Gene[®] Q (Qiagen), $DX^{\$}/CFX$ (Bio-Rad) and Applied Biosystems[®] 7500 (Life TechnologiesTM) thermal cyclers.

Other makes and models should be fully tested and evaluated for optimal performance by the user before reporting results.

The equipments should be regularly maintained, in accordance with the manufacturer's instructions, and calibrated to ensure accurate PCR cycling and optimal performance.

PRECAUTIONS AND WARNINGS

- In compliance with Good Laboratory Practice, define three separate laboratory's areas for: DNA extraction, PCR reaction mix preparation; manipulation of controls provided with the kit. Each area must have dedicated pipettes and laminar flow hood.
- If required, Euroclone Diagnostica offers the necessary technical support for the correct use of the kit.
- Carefully read this Instruction for Use before using the kit
- Do not use the reagents after the expiry date
- Thaw and carefully mix the reagents of the kit before use
- Do not mix the reagents from different lots of the product
- Use calibrated and regularly checked pipettes and instrumentation only
- Use dedicated laboratory equipments. Change gloves frequently
- Periodically wipe the working area with 0,5% hypochlorite
- Use powder-free gloves. Do not leave fingerprints on optical section.
- Materials containing or potentially containing infectious agents must always be manipulated in a separated microbiological safety room under a Biohazard biological hood.
- In case of damaged package, contact the technical support before using the kit
- Do not use the product when stored at temperatures other than those indicated on the labels or described in this Instructions For Use.
- In case of spillage of the kit contents, please refer to the specific Material Safety Data Sheet (MSDS, available on request).
- The kit reagents, individual protective equipments, used materials, biological samples and test residuals must be disposed in accordance with local regulations.
- Patient Drug treatment may interfere with the final result of the molecular biology analysis.

OPERATING PROCEDURE

a) DNA purification

For genomic DNA purification EuroClone Diagnostica recommends to use:

- Duplic $\alpha^{\text{@}}$ Prep NA Body Fluid kit (ref. EDI004200) with Duplic $\alpha^{\text{@}}$ PREP Automatic Extractor (ref. EDI001).
- GXT NA Extraction kit (BKR120802) with the GenoXtract® system (ref. DS083101)
- Bact Extra Pure Kit (ref. EDR004050) for manual extraction.

Other extraction reagents and methods should be fully tested and evaluated for optimal performance by the user before reporting results.

For **Duplicα**®**Prep Body Fluid kit** and **Bact Extra Pure kit**, use **200μl** of the biological sample. If using the Internal Control (C2) as an Extraction/Amplification Control add **10μl** of the **C2** during the DNA purification procedure directly into the sample/lysis buffer mix. Elute in **50μl** of elution buffer. For GXT NA Extraction kit, use **250μl** of the biological sample. If using the Internal Control (C2) as an Extraction/Amplification Control add **10μl** of the **C2** during the DNA purification procedure directly to the

Extraction/Amplification Control add 10μ I of the biological sample. If using the Internal Control (C2) as an Extraction/Amplification Control add 10μ I of the C2 during the DNA purification procedure directly to the sample together with Proteinase K (not supplied). The use of polyA (not supplied) is optional. Elute in 50μ I of elution buffer.

For all extraction methods, if using the C2 as an Extraction/Amplification Control, prepare an **Extraction Negative Control (ENC)** by using the supplied Reaction Blank (**BM**), to which the **C2** should be added similarly to all samples to be extracted. In all cases, avoid mixing the C2 directly with the sample prior to the lysis step.

The Positive Control (C1) does not require an extraction step and must be used directly during the amplification phase

b) Thermalcycler Setup

Important points before starting: Refer to the specific handbook of the equipment used to set the thermal profile indicated in the **Thermal Profile Table**. We recommend to switch on the instrument and to set the thermal profile before preparing the reaction mix.

N.B.: before starting the run is recommended to save the file as "**Next Trichomonas vaginalis Test**"; this way it is possible to save the Thermal Profile and settings and recall them in subsequent runs.

Rotor-Gene® Q platform

- Start the software and on the box New Run select Advanced
- Select a new template in Empty Run or a pre-existing one
- Select the Rotor Type of your instrument and then Next
- Type 25 µl in the reaction volume and then Next
- Select Edit Profile and set up the correct Thermal Profile as indicated in the table below
- Select Gain Optimisation and then flag the option Perform Optimisation before 1st acquisition
- On Channel Settings select the green/yellow fluorophores and tube position "1" to perform the optimization. Then close the window and select Next and Start Run

DX®/CFX platform

- Select Create a new Experiment
- In the Protocol section select Create New to set the thermal profile
- In Plate Editor: set FAM and as Fluorophores and define the sample name.

Applied Biosystems® 7500 platform

- Select Create a new Experiment
- In the Experiment Properties select Quantitation-Standard curve as experiment type and Taqman[®]
 Reagents as reagent type
- Select the Run Mode (7500 or 7500 Fast) and the Ramp Speed (Standard)
- In the Setup menu select Run Method to set the thermal profile
- In the *Setup* menu select *Plate Setup-Define Targets and Samples* to select Samples and assign VIC target to internal control (C2) and FAM to the positive control (C1). Leave the default value (*NFQ-MGB*) as quencher type
- In *Define Samples* insert the sample name
- Select the used wells in Plate Setup-Assign Targets and Samples
- Select *None* as passive reference

Thermal Profile Table (common for all the supported platforms)

TIME	TEMPERATURE	CYCLES
10 min	95°C	1
20 sec	95°C	50
		Fluorescence
60 sec	60°C	Acquisition

c) PCR mix preparation

The total reaction volume is $25 \mu l$.

For each experiment prepare a PCR mix for the required number of controls and **n+1** samples. If using the C2 as an Extraction/Amplification Control (EAC), these controls include 1 Extraction Negative Control (ENC) and 1 Positive Control (C1). Euroclone Diagnostica also recommends to include 1 Reaction Blank (BM) in every session to evaluate the presence of any contamination; in this case use directly 5µl of Reaction Blank (BM) provided, considering it as an extracted sample.

The mix must be prepared by mixing the reagents as indicated in the table:

REAGENT	VOLUME (μl)
Amplification mix	10
Oligo mix	10
Extracted DNA with EAC	5

The PCR mix has to be freshly prepared every time

After its preparation, aliquot **20µl of Master Mix** in the tubes or in the microplates well for PCR then add in each tube/well **5µl** from the **extracted DNA (or ENC)** or from **amplification controls (C+** and **BM)**, place in order the tubes/microplate in the instrument and start the program of amplification. At the end of the program remove the tubes/microplate from the thermalcycler.

Alternatively, the Internal Control (C2) can also be used as a control in the amplification phase only. In this case, extract the samples according to the specific protocol of the kit in use, as described in the paragraph "a) DNA purification", excluding the step of the addition of the C2. The internal control (C2) should be added directly to the PCR MIX, prior to the aliquotation. The reagents of the PCR mix have to be mixed as indicated in the table below:

REAGENT	VOLUME (μl)
Amplification mix	10
Oligo mix	10
Internal Control (C2)	1
Extracted DNA without EAC	4

After its preparation, aliquot **21µI of Master Mix** in the tubes or in the microplates well for PCR then add in each tube/well **4µI** from the **extracted DNA** or from **amplification controls** (**C+** and **BM)**, place in order the tubes/microplate in the instrument and start the program of amplification. At the end of the program remove the tubes/microplate from the thermalcycler.

d) ANALYSIS and INTERPRETATION of RESULTS

Important points before starting: For a detailed description on how to analyze data, refer to $System\ User's\ manuals$. Always visually inspect the amplification plot for each sample tested versus C_T values obtained with the software.

Results interpretation

Refer to the instrument-specific user guide to visualize the amplification plots for the entire plate/rotor. Detailed analysis of raw data depends on the real-time PCR instrument used. Baseline noise levels should either be set automatically or at predefined cycles.

The fluorescence in each channel indicates the hybridisation of the specific probes:

- Channel 1 for FAM/Green= Target probe
- Channel 2 for HEX/Cy3/Yellow= Internal Control probe.
- If a sample shows a fluorescence in FAM/Green (C_T>0), the sample is surely positive and the signal detected by HEX/Cy3/Yellow fluorophore (C_T≥0) is not relevant.
- When no signal at fluorophore FAM/Green (C_T=0) is detected, to confirm the negative result, the completed amplification of internal control and therefore the appearance of a fluorescent signal at HEX/Cy3/Yellow (C_T>0) fluorophore level, must be verified. Only in this case we can state that the sample is definitely negative.
- Condition in which no signal is detected indicates no DNA extraction or PCR inhibition. The sample must be repeated; a dilution 1:10 of the target DNA or complete DNA extraction is suggested.

In case the Internal Control (C2) has been used as an Extraction/Amplification Control (EAC), please be aware that:

- The Reaction Blank (BM) must be negative in both the FAM/Green and the HEX/Cy3/Yellow channel.
- The Positive Control (C1) must be positive in the FAM/Green channel.
- The Extraction Negative Control (ENC) must be negative in the FAM/Green channel, but positive in the HEX/Cy3/Yellow channel.

In case the Internal Control (C2) has been used only during amplification, adding it to the reaction mix, the signal of the HEX/Cy3/Yellow channel will also be present in the Positive Control (C1) and in the Reaction Blank (BM). For the Positive Control (C1), the **HEX/Cy3/Yellow** signal, due to competition with **FAM/Green** probe, may arise later or be absent. In this case the **HEX/Cy3/Yellow** signal is not relevant and the run is valid anyway.

If all these conditions have been met, the run is valid and it's possible to analyse the data; otherwise the run is not valid. It's responsibility of the user to validate the run.

Results Interpretation Table

FAM/Green	HEX/CY3/Yellow	Results
C _T > 0	Not relevant ($C_T \ge 0$)	POSITIVE
C _T = 0	C _T > 0	NEGATIVE
$C_T = 0$	$C_T = 0$	INHIBITION

TROUBLESHOOTING

Problem 1: Weak or no signal of Positive Control, C1.

- 1. The PCR conditions didn't comply with the instructions. All sample results are IVALID:
 - Check the amplification protocol and select the fluorescence channel reported in the manual.
- 2. Deterioration of dyes and/or primers. The reagents storage conditions didn't comply with the instructions:
 - Check storage conditions.

Problem 2: Weak or no signal of the Internal Control, C2 in unknown samples AND Reaction Blank BM.

- 1. The PCR was inhibited:
 - Make sure to use a recommended DNA purification method and carefully follow the manufacturer's instructions.
- 2. Pipetting error due to omitted reagents or samples:
 - Repeat the analysis starting from PCR
- 3. Deterioration of dyes and/or primers. The reagents storage conditions didn't comply with the instructions:
 - Check storage conditions.
- 4. Very low starting amount and/or low purity of genomic DNA. Improper DNA extraction:
 - Repeat the DNA purification.
- 5. Wrong channel/filter was chosen. The PCR conditions didn't comply with the instructions:
 - Check the PCR conditions and select the fluorescence channels reported in the protocol for the Unknown Sample detection.

Problem 3: FAM signal in Reaction Blank BM or in Extraction Negative Control (ENC).

Contamination during DNA Extraction and/or PCR preparation procedure. All samples results are INVALID:

- 1. Decontaminate the working area and all instruments.
- 2. Pipette the control C1 at last.
- 3. Repeat the DNA Extraction and the PCR preparation using a new set of reagents.

Problem 4: No FAM and HEX signals in unknown sample.

- 1. The PCR was inhibited:
 - Make sure to use a recommended DNA purification method and carefully follow the manufacturer's instructions.

Problem 5: Wide Fluctuations in fluorescence values.

- 1. The PCR Master Mix is not well prepared:
 - Carefully repeat the PCR preparation procedure.
- 2. Air bubbles trapped in the PCR tubes:
 - Check the presence of air bubbles before starting a new run.

Problem 6: Absence of any fluorescent signal.

1. Verify the performance of the thermal cycler:

- Calibrate the equipment.
- 2. Deterioration of dyes and/or primers. The storage conditions didn't comply with the instructions:
 - Check storage conditions.
 - Check the expiry date of the kit.

Problem 7: The thermal cycler gives an error message.

 Refer to the real-time PCR instrument user manual or contact the local technical support of the realtime PCR instrument company.

Problem 8: The kit reagents left out of the storage range temperature.

1. These reagents must be stored **as indicated** for a proper execution of the test. The performance of the product is not guaranteed if the reagents have not been properly stored.

Duplicα^{RealTime} Next *Trichomonas vaginalis* Kit

REV. EBR038032_IFU_REV.01D_ENITA

REF EBR038032- 32 test

Istruzioni Per l'Uso

FINALITA' D'USO

Il **Duplic** α^{RealTime} **Next** *Trichomonas vaginalis* **Kit** è un test di amplificazione di acidi nucleici *in vitro* per la ricerca del DNA batterico di *Trichomonas vaginalis* in campioni clinici.

INTRODUZIONE

Trichomonas vaginalis (TV) è un protozoo parassita che infetta comunemente il tratto genitale degli uomini e delle donne. E' ormai considerato uno degli agenti più comunemente curabili delle malattie a trasmissione sessuale (STD). L'OMS ha stimato che ogni anno si registrano 160 milioni di casi in tutto il mondo. Nonostante che il 70% degli individui infetti siano asintomatici, le infezioni possono causare vaginiti, uretriti, e cervicite nelle donne, mentre uretrite e prostatite negli uomini. I pazienti affetti da Trichomonas vaginalis hanno un aumentato rischio di contrarre altre infezioni trasmesse sessualmente come ad esempio l'HIV, mentre le infezioni nelle donne in gravidanza sono associate a parto prematuro, basso peso della prole alla nascita, rottura prematura delle acque, post-isterectomia / infezioni post partum e aborto.

I sintomi di infezione da *Trichomonas vaginalis* si sovrappongono considerevolmente con altre infezioni a trasmissione sessuale, per la diagnosi definitiva è quindi necessaria la diagnosi di laboratorio.

PRINCIPIO DEL TEST

Il **Duplic** α^{RealTime} **Next** *Trichomonas vaginalis* **Kit** è un test molecolare basato sul riconoscimento del DNA di *Trichomonas vaginalis*. Il Kit è stato disegnato per amplificare per amplificare il gene Beta-tubulin (btub3). I reagenti per la reazione di amplificazione sono pronti all'uso e suddivisi in tre mix di reazione:

- <u>AMPLIFICATION MIX:</u> contenente Hot Start Taq DNA polimerasi, nucleotidi, MgCl2 e buffer.
- **OLIGO MIX:** contenente i primers e le sonde fluorogeniche.
- **CONTROLLO INTERNO**: permette di verificare il processo di estrazione e/o di amplificazione.

Il **Duplic** α^{RealTime} **Next** *Trichomonas vaginalis* **Kit** è basato sul riconoscimento specifico e amplificazione di sequenze target di PCR e sulla rilevazione simultanea dei prodotti di PCR tramite sonde fluorescenti. Vengono usate due sonde marcate con un differente fluoroforo per ogni sequenza investigata; in particolare la sonda per il target specifico porta all'estremità 5' il fluoroforo FAM (6-carbossi-fluoresceina) mentre l'altra sonda, che va a rilevare il controllo interno, ha legato il fluoroforo HEX (esa-clorofluoresceina). Entrambe le sonde hanno all'estremità 3' un quencher non fluorescente. In seguito ad eccitazione, la sonda integra non emette fluorescenza, in quanto la vicinanza del quencher al reporter impedisce a quest' ultimo l'emissione della fluorescenza (effetto di quenching).

COMPOSIZIONE DEL KIT

Questo kit è stato realizzato per poter eseguire 32 reazioni se utilizzato in 4 sessioni analitiche con 6 **campioni,** e 2 **controlli** oppure 5 **campioni** e 3 **controlli**.

Componenti del kit

Reagenti	Codice Colore	Conservazione (range, °C)	Volume (μl)	Quantità (tubi)
Oligo Mix (OM)*	Tappo Verde	-22÷-18	400	1
Amplification Mix (AM)	Tappo Blu	-22÷-18	400	1
Controllo 1 (C1, Controllo positivo)	Tappo Rosso	-22÷-18	>50	1
Controllo 2 (C2, Controllo interno)**	Tappo Giallo	-22÷-18	400	1
Bianco di Reazione (BM) ***	Tappo Bianco	-22÷-18	1500	1

^{*}la provetta deve essere conservata lontano dalla luce

** Il controllo interno (C2) può essere usato sia come controllo di estrazione/amplificazione (EAC) aggiungendolo direttamente alla miscela campione/tampone di lisi durante la procedura di estrazione del DNA (per i dettagli vedere il paragrafo "a) Purificazione del DNA" e fare riferimento al protocollo specifico del kit di estrazione) o come controllo di amplificazione aggiungendolo direttamente alla mix di PCR (per i dettagli vedere il paragrafo "c) Preparazione della PCR mix")

*** utilizzato sia nella procedura di estrazione come controllo negativo di estrazione (ENC, vedi paragrafo "a) Purificazione del DNA"), sia in amplificazione come Bianco di reazione (vedi il paragrafo "c) Preparazione della mix di PCR").

CONSERVAZIONE E STABILITÀ

Tutti i reagenti devono essere conservati a **-22÷-18°C** fino alla data di scadenza riportata sulla confezione. Non scongelare e ricongelare il prodotto più di sei volte.

MATERIALE NECESSARIO NON FORNITO

- Kit di estrazione per la purificazione del DNA (fare riferimento alla sezione specifica del relativo manuale d'uso)
- Tubi ottici o micropiastra ottica per Real Time PCR
- Guanti senza talco e camice da laboratorio monouso
- Micropipette (5 -20 μl, 20-200 μl e 100-1000 μl)
- Puntali con filtro RNasi/DNasi-free
- Porta provette
- Vortex
- Centrifuga da tavolo
- PCR box
- Refrigeratore
- Congelatore
- Termociclatore per Real Time PCR

Il kit è stato validato per le piattaforme di Real time PCR: RotorGene® Q (Qiagen), DX®/CFX (Bio-Rad) e Applied Biosystems® 7500 (Life Technologies™).

Altre marche e modelli devono essere pienamente testati e valutati per prestazioni ottimali da parte dell'utente prima di refertare i risultati.

La strumentazione deve essere mantenuta regolarmente, in accordo con le istruzioni del produttore, e calibrato in modo da assicurare prestazioni ottimali.

PRECAUZIONI E RACCOMANDAZIONI

- È buona pratica suddividere il laboratorio in tre aree distinte: estrazione del DNA, preparazione della miscela di PCR, e manipolazione dei controlli forniti con il kit. Ogni area deve essere completa di cappa a flusso laminare e di un set di pipette dedicato.
- Euroclone Diagnostica offre se richiesto ai suoi clienti il supporto tecnico necessario per il corretto utilizzo del kit
- Leggere attentamente questo manuale di Istruzioni Per l'Uso prima di utilizzare il kit
- Non utilizzare reagenti dopo la data di scadenza
- Scongelare e miscelare attentamente i reagenti prima dell'utilizzo
- Non mescolare reagenti provenienti da lotti diversi del prodotto
- Usare pipette e strumentazione tarata e controllata regolarmente
- Usare attrezzatura di laboratorio dedicata e cambiare spesso i guanti
- Pulire regolarmente l'area di lavoro con ipoclorito al 0,5%
- Utilizzare i guanti senza talco e evitare di lasciare impronte sui tappi ottici.
- I materiali contenenti o sospettati di contenere agenti infettivi devono essere sempre manipolati all' interno di una stanza a sicurezza microbiologica e sotto una cappa biologica Biohazard.
- In caso di imballo danneggiato del kit, prima dell'utilizzo contattare l'assistenza tecnica
- Non utilizzare il prodotto se conservato in condizioni ambientali diverse da quelle riportate in etichetta e descritte nella specifica sezione di questo manuale di Istruzioni Per l'Uso.
- In caso di sversamento del contenuto del kit riferirsi alla Scheda di Sicurezza specifica del prodotto (Material Safety Data Sheet, MSDS; disponibile su richiesta).
- I reagenti del kit, le misure di protezione individuali, i materiali utilizzati, e i residui dei campioni biologici e del test vanno smaltiti in conformità con le norme in vigore nel Paese di utilizzo.
- Il trattamento farmacologico potrebbe interferire con il risultato finale.

PROTOCOLLO OPERATIVO

a) Purificazione del DNA

Per la purificazione del DNA genomico EuroClone Diagnostica raccomanda:

- Duplic α [®]Prep NA Body Fluid kit (ref. EDI004200) per Duplic α [®]PREP Automatic Extractor (ref. EDI001).
- GXT NA Extraction kit (BKR120802) con il sistema di estrazione GenoXtract® (ref. DS083101)
- Bact Extra Pure Kit (ref. EDR004050) per estrazione manuale.

Altri reagenti e metodi di estrazione devono essere pienamente testati e valutati per prestazioni ottimali da parte dell'utente prima di refertare i risultati.

Per Duplic α NA Body Fluid kit e Bact Extra Pure kit, utilizzare 200 μ l del campione biologico. Se si usa il Controllo interno (C2) come controllo di estrazione/amplificazione, aggiungere 10 μ l di C2 durante la procedura di purificazione del DNA direttamente nella mix tampone di lisi/campione. Eluire in 50 μ l di tampone di eluizione.

Per GXT NA Extraction kit, utilizzare 250µl del campione biologico. Se si usa il Controllo interno (C2) come controllo di estrazione/amplificazione, aggiungere 10µl di C2 durante la procedura di purificazione del DNA direttamente al campione insieme alla Proteinasi K (non fornita). L'utilizzo del polyA (non fornito) è opzionale. Eluire in 50µl di tampone di eluizione.

Per tutti i metodi di estrazione, se si usa il C2 come controllo di estrazione/amplificazione, preparare un Controllo Negativo di Estrazione (ENC) sottoponendo a estrazione del DNA un aliquota del Bianco di Reazione (BM) fornito, a cui va aggiunto il C2 analogamente a tutti i campione da estrarre. In ogni caso, evitare di aggiungere il C2 direttamente nel campione prima della lisi. Il Controllo Positivo (C1) non necessita di estrazione e va utilizzato direttamente in fase di amplificazione

b) Programmazione del termociclatore

Importante prima dell'allestimento della corsa: Riferirsi al Manuale Utente per istruzioni dettagliate sul funzionamento del sistema e per inserire il profilo termico riportato nella tabella: **Profilo Termico**. Si consiglia di accendere lo strumento e di impostare il profilo termico prima di preparare la miscela di reazione.

NB: prima di iniziare la corsa si consiglia di salvare il file come "**Next Trichomonas vaginalis Test**" in questo modo è possibile salvare il profilo termico con le relative impostazioni e di richiamarle in esecuzioni successive.

Piattaforma Rotor-Gene® Q

- Avviare il programma e selezionare Advanced nella finestra New Run
- Selezionare new template in Empty Run oppure un template già esistente
- Selezionare il Tipo di Rotore dello strumento in uso e poi Next
- Indicare 25 µl come volume di reazione e poi Next
- Selezionare Edit Profile impostare il profilo termico come indicato in tabella
- Selezionare Gain Optimisation e attivare la funzione Perform Optimisation before 1st acquisition"
- In *Channel Settings* selezionare green/yellow fluorophores e la posizione "1" per effettuare l'ottimizzazione. Chiudere la finestra e selezionare *Next*, infine *Start Run*.

Piattaforma DX®/CFX

- Selezionare Create a new Experiment
- Nella sezione Protocol impostare il profilo termico in Create New come indicato in tabella
- Selezionare i campioni e impostare i fluorofori FAM e HEX nel menu Plate Editor.

Piattaforma Applied Biosystems® 7500

- Selezionare Create a New Experiment
- Nella sezione Experiment Properties definire il nome e il tipo di esperimento (Quantitation-Standard Curve)
- Infine impostare il tipo di tecnologia (*Taqman*[®] *Reagents*), la modalità di esecuzione (Run Mode: 7500 o 7500 Fast) e la velocità di ramping (Ramp Speed: *Standard*)
- Nel menu Setup selezionare Run Method e impostare il profilo termico come indicato in tabella
- Nel menu Setup selezionare Plate Setup-Define Targets and Samples per selezionare i campioni e assegnare il target VIC al controllo interno (C2) e FAM al controllo positivo (C1).
- Nella sezione *Define Samples* inserire il nome del campione
- Selezionare i pozzetti in uso in Plate Setup-Assign Targets and Samples
- Selezionare None nella tendina Select the dye to use as the passive reference

Tabella: Profilo Termico (comune per le piattaforme)

TEMPO	TEMPERATURA	CICLI
10 min	95°C	1
20 sec	95°C	50
60 sec	60°C	Acquisizione Fluorescenza

c) Preparazione della PCR mix

Il volume totale della reazione è di $25 \mu l$.

Per ogni esperimento preparare una Mix di PCR per il numero di controlli richiesti e n+1 campioni. Se si usa il C2 come un controllo di Estrazione/Amplificazione, questi controlli includono 1 Controllo negativo di Estrazione (**ENC**) e 1 controllo positivo (**C1**). Euroclone Diagnostica raccomanda di includere in ogni seduta anche 1 Bianco di Reazione (BM), per valutare la presenza di eventuali contaminazioni; in questo caso utilizzare 5µl di Bianco di Reazione (**BM**) fornito trattandolo come un campione estratto.

La mix deve essere preparata miscelando i reagenti come indicato in tabella:

REAGENT	VOLUME (μl)
Mix di Amplificazione	10
Oligo mix	10
DNA Estratto con EAC	5

Non conservare la mix di PCR ma prepararla fresca ogni volta

Terminata la preparazione della mix, aliquotare 20µl della Master Mix nelle provette o nei pozzetti della micropiastra per PCR e aggiungere in ogni provetta/pozzetto 5µl di DNA estratto (o **ENC**) o dei controlli di amplificazione (C+ e BM); disporre le provette o la piastra all'interno dello strumento e avviare il programma di amplificazione precedentemente impostato. Al termine del protocollo di amplificazione, rimuovere le provette o la piastra dal termociclatore.

In alternativa, il Controllo interno (**C2**) può anche essere utilizzato come controllo nella sola fase di amplificazione. In tal caso, estrarre i campioni seguendo il protocollo specifico del kit in uso, come descritto nel paragrafo "a) Purificazione del DNA", con l'esclusione del passaggio dell'aggiunta del controllo interno (**C2**).

Quando si prepara la PCR Mix, il controllo interno (**C2**) deve essere aggiunto direttamente alla PCR MIX, prima dell'aliquotazione. I reagenti della mix di PCR devono essere miscelati come indicato nella tabella seguente:

REAGENT	VOLUME (μl)
Mix di Amplificazione	10
Oligo mix	10
Controllo Interno (C2)	1
DNA Estratto senza EAC	4

Dopo la preparazione, aliquotare 21µl di Master Mix nelle provette o nel pozzetto delle piastre per PCR, quindi aggiungere in ogni provetta/pozzetto 4 µl dal DNA estratto o dei controlli di amplificazione (**C1 e BM**), posizionare le provette o la piastra nello strumento e avviare il programma di amplificazione. Alla fine del programma rimuovere i tubi/piastra dal termociclatore.

d) ANALISI ed INTERPRETAZIONE dei RISULTATI

Importante prima dell'analisi della corsa: Per una descrizione dettagliata su come analizzare i dati, riferirsi al Manuale Utente. Valutare sempre visivamente, per ciascun campione testato, le curve di amplificazione rispetto ai valori di C_T ottenuti con il software d'analisi.

Interpretazione dei Risultati

Fare riferimento al manuale d'uso specifico per la piattaforma in uso per visualizzare le curve di amplificazione di tutti i campioni in analisi. L'analisi dettagliata dei dati grezzi dipende dallo strumento utilizzato. La linea di base del rumore di fondo del segnale fluorescente può essere settata sia in automatico sia a un numero di cicli predefinito.

La fluorescenza di ogni canale indica l'ibridazione di una sonda specifica per un target:

- Canale 1 per FAM/Green= sonda associata al Target
- Canale 2 per HEX/Cy3/Yellow= sonda associata al Controllo Interno.
- Quando si registra un segnale a livello del fluoroforo FAM/Green ($C_T>0$), il campione è sicuramente positivo, ed il segnale rilevato dal fluoroforo **HEX/Cy3/Yellow** ($C_T\ge0$) non è rilevante.
- Quando non si registra segnale a livello di Fluoroforo FAM/Green (C_T=0), per confermare la negatività del risultato, si deve verificare la corretta amplificazione del controllo interno e quindi la comparsa di un segnale di fluorescenza a livello del Fluoroforo HEX/Cy3/Yellow (C_T>0). Solo in questo caso si può refertare il campione come negativo.
- Se nessun segnale viene rilevato, la procedura di estrazione del DNA è fallita o la PCR è stata inibita. Il campione deve essere ripetuto; si suggerisce di effettuare una diluizione 1:10 del DNA target o di ripetere interamente la procedura di estrazione.

Se il controllo interno (C2) è stato utilizzato come Controllo di Estrazione/Amplificazione (EAC), è importante verificare che:

- Il Bianco di reazione (BM) deve essere negativo sia nel canale FAM/Green che nel canale HEX/Cy3/Yellow.
- Il Controllo Positivo (C1) deve essere positivo nel canale FAM/Green.
- Il Controllo Negativo di Estrazione (ENC) deve essere negativo nel canale FAM/Green, ma positivo nel canale HEX/Cy3/Yellow.

Nel caso in cui il Controllo interno (C2) sia stato utilizzato solo in fase di amplificazione addizionandolo alla mix di reazione, il segnale del fluoroforo HEX/Cy3/Yellow sarà presente anche nel Controllo Positivo (C1) e nel Bianco di Reazione (BM). Nel caso del controllo positivo (C1), il segnale **HEX/Cy3/Yellow** può uscire tardivamente o non uscire affatto per competizione. In questo caso la presenza del segnale **HEX/Cy3/Yellow** non è rilevante e la corsa è comunque valida.

Se si verificano tutte queste condizioni la corsa é valida ed é possibile analizzare i dati, altrimenti la corsa non é valida. É responsabilità dell'operatore validare la corsa controllando che queste condizioni si siano verificate.

Tabella di Interpretazione dei Risultati

FAM/Green	HEX/Cy3 /Yellow	Risultato
C _T > 0	Non rilevante (C _T ≥ 0)	POSITIVO
C _T = 0	C _T > 0	NEGATIVO
$C_T = 0$	$C_T = 0$	INIBIZIONE

TROUBLESHOOTING

Problema 1: Segnale debole o assente nel controllo nel Controllo Positivo, C1.

- 1. Le condizioni di PCR non rispecchiano le istruzioni riportate:
 - Verificare il protocollo di amplificazione e selezionare il canale di fluorescenza riportato nel manuale.
- 2. Deterioramento dei fluorofori/primers. Le condizioni di stoccaggio dei reagenti non sono conformi alle istruzioni riportate nel manuale d'uso.

Problema 2: Segnale debole o assente nel Controllo Interno, C2 in campioni ignoti E nel bianco di Reazione, BM.

- 1. La PCR è stata inibita:
 - Assicurarsi di utilizzare un metodo di estrazione di DNA validato e seguire attentamente le istruzioni riportate nel manuale d'uso del produttore.
- 2. Errore nel pipettaggio per omissione di un reagente o del campione:
 - Ripetere l'analisi partendo dalla PCR.
- 3. Deterioramento dei fluorofori/primers. Le condizioni di stoccaggio non sono conformi alle istruzioni riportate nel manuale d'uso:
 - Verificare le condizioni di conservazione del kit.
- 4. Quantità di DNA insufficiente e/o di bassa purezza. Estrazione di DNA inefficiente:
 - Ripetere l'estrazione del DNA.
- 5. Selezione del canale/filtro sbagliato. Le condizioni di preparazione di PCR non sono conformi alle istruzioni riportate nel manuale d'uso:
 - Verificare le condizioni di PCR e selezionare i canali di fluorescenza riportati nel protocollo per la rilevazione del campione ignoto.

Problema 3: Presenza di segnale FAM nel Bianco di Reazione BM o nel Controllo Negativo di Estrazione (ENC).

- 1. Contaminazione durante la procedura di estrazione del DNA o di preparazione della mix di PCR. Tutti i risultati sono da considerarsi INVALIDI:
 - Decontaminare il piano di lavoro e tutti gli strumenti.
 - Manipolare il controllo positivo C1 solo alla fine.
 - Ripetere l'estrazione del DNA o la PCR utilizzando un nuovo set di reagenti.

Problema 4: Nessun segnale di FAM e HEX in campioni ignoti

- 1. La PCR è stata inibita:
 - Assicurarsi di utilizzare un metodo di estrazione di DNA validato e seguire attentamente le istruzioni riportate nel manuale d'uso del produttore.

Problema 5: Ampie fluttuazioni nei valori di fluorescenza.

- 1. La Master Mix di PCR non è stata miscelata bene:
 - Ripetere attentamente la procedura di preparazione della PCR.
- 2. Presenza di bolle d'aria nei tubi/piastra di PCR:
 - Eliminare le eventuali bolle presenti prima di iniziare una nuova corsa.

Problema 6: Assenza completa di segnale.

1. Controllare le prestazioni del termociclatore:

- Effettuare la calibrazione dello strumento.
- 2. Deterioramento dei fluorofori/primers. Le condizioni di stoccaggio non sono conformi alle istruzioni riportate nel manuale d'uso:
 - Verificare le condizioni di conservazione del kit.
 - Verificare la data di scadenza del kit.

Problema 7: Il termociclatore dà un messaggio di errore.

1. Consultare il manuale di Istruzioni Per l'Uso dello strumento o contattare il supporto tecnico.

Problema 8: I reagenti del kit sono stati lasciati fuori dall'intervallo di temperatura di stoccaggio.

1. Questi reagenti devono essere conservati come indicato per una corretta esecuzione del test. Le prestazioni del prodotto non sono garantite se questi reagenti non sono stati correttamente conservati.

Legenda dei Simboli Utilizzati Key to symbols used			
REF	Codice del prodotto Catalogue number		Limitazioni di temperatura Temperature limitation
IVD	Dispositivo medico diagnostico in vitro In Vitro Diagnostic Medical Device	REV	Revisione Revision
LOT	Numero di lotto Batch code	i	Leggere le istruzioni d'uso Consult instructions for use
\subseteq	Data di scadenza Use by	Σ	Sufficiente per un <n> di test Contains sufficient for <n> tests</n></n>
***	Fabbricante Manufacturer	CE	Conforme ai requisiti della Direttiva 98\79\CE According to 98/79/CE Directive

Tel. +39 02 381951 - Fax +39 02 33913713 info@euroclone.it - www.euroclonediagnostica.it

Quality Management Systems and Environmental certified according to EN ISO 9001 and ISO 13485