

# Produktinformation



Forschungsprodukte & Biochemikalien



Zellkultur & Verbrauchsmaterial



Diagnostik & molekulare Diagnostik



Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!



# Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

# Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

# SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in





# Malaria panel REF: RT-61 or RT-61S

### Detection and amplification of the P.falciparum, P.ovale P.malariae and P.vivax genome with Real Time PCR

## INTRODUCTION AND PURPOSE OF USE

The system Malaria panel is a qualitative test that allows the DNA amplification, by means of Real Time PCR, of P.falciparum, P.ovale P.malariae and P.vivax genome extracted from biological samples. The procedure allows the detection of the DNA target (18s Ribosomal RNA gene) through a genomic amplification reaction.

The analysis of the results is made using a Real Time PCR analyser (thermal cycler integrated with a system for fluorescence detection and a

he kit contains reagents enough to perform 24 amplification tests:

|    | Quantity   | Description                                                                                                                                                                                   |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1 | 2 x 360 μl | Amplification mMix<br>dNTPs, Tris-HcI, KCI, MgCl <sub>2</sub> , Taq Polymerase, <i>AmpErase</i><br>Uracil N-Glycosylase ( <i>UNG</i> ), Nuclease-free water, ROX<br>(Pink Cap)                |
| R2 | 2 x 110 µl | falciparum/ovale probes Mix Upstream primer, downstream primer, P.falciparum probe (FAM), P.ovale Probe (VIC), Internal control (β-globina) Probe (CY5) Nuclease-free water (White cap)       |
| R3 | 2 x 110 μl | malariae/vivax probes Mix<br>Upstream primer, downstream primer, P.malariae probe<br>(FAM), P.vivax Probe (VIC), Internal control (β-globina)<br>Probe (CYS) Nuclease-free water (Yellow cap) |
| R4 | 2 x 35 μl  | P. falciparum positive control                                                                                                                                                                |
| R5 | 2 x 35 µl  | P. ovale positive control                                                                                                                                                                     |
| R6 | 2 x 35 μl  | P. malariae positive control                                                                                                                                                                  |
| R7 | 2 x 35 μl  | P. vivax positive control                                                                                                                                                                     |
| R8 | 1 x 30 μl  | Negative Control                                                                                                                                                                              |

Istruction for use: ST RT61-FNG 10

### MATERIALS AND STRUMENTATION REQUIRED BUT NOT SUPPLIED

latex powder-free gloves or similar material:

Bench microcentrifuge (12.000 - 14.000 rpm):

Micropipettes and Sterile tips with aerosol filter; Vortex;

Plastic materials (microplate and optical adhesive cover):

Dry block shacker for 1.5ml conical tubes

Magnetic rack for 1.5ml conical tubes EZ1 Advanced XL DSP Virus Card. - Ref. 9018703 - QIAGEN.

ATL Buffer - Ref. 939016 - QIAGEN

RT-66 - Plasmodium Screening
The system allows the P.falciparum, P.vivax, P.malariae and P.ovale genomes amplification without give the identification of the species. The kit contains reagents for 48 tests.

The Malaria Panel kit was developed and validated to be used with the

# Manual Extraction

Ref 51304/51306 QIAmp DNA mini kit

The kit allows the DNA extraction from tested samples. The kit contains reagents for 50/250 samples.(QIAGEN).

# Automatic Extraction

Ref 62724 FZ1 XI DSP Virus Kit

The kit allows the automatic viral DNA from Human samples. The kit contains reagents for 48 samples. (QIAGEN)

Ref. ZP02001 MagPurix Blood DNA Extraction Kit 200

The kit allows the automatic viral DNA from Human samples.
The kit contains reagents for 48 samples. (ZINEXTS LIFE SCIENCE

# Manual/Automatic extraction (Siemens)

10629800 - VERSANT® Sample Preparation 1.2 Reagents kit box 1. The kit allows the manual DNA extraction from Human samples. The kit contains reagents enough to perform the DNA extraction for 96 samples.

10629801 - VERSANT® Sample Preparation 1.2 Reagents kit box 2. The kit allows the manual DNA extraction from Human samples. The kit contains reagents enough to perform the DNA extraction for 96 samples.

# Instruments

The Malaria panel kit was developed and validated to be used with the following instruments:

### Extraction System Ref. 9001492. EZ1 Advanced XL.

Robotic Workstation for the automatic purification of the nucleic acids until 14 samples simultaneously (QIAGEN)

Ref. ZP01005. MagPurix 12A.

Robotic Workstation for the automatic purification of the nucleic acids until 12 samples simultaneously (ZINEXTS LIFE SCIENCE CORP)

### Real Time PCR

The Malaria panel kit was developed and validated to be used with the following real time PCR instruments

- 7500 Fast from Lifetechnologies
- Rotor-Gene Q MDx from QIAGEN
- Versant kPCR AD from Siemens or Stratagene MX3005P/MX3000P
- CFX96 Real Time PCR System from BioRad
- mic Real Time PCR cycler from Bio Molecular System

Please ensure that the instruments have been installed, calibrated, checked and maintained according to the manufacturer's instruction and

# SAMPLES AND STORAGE

The Malaria panel system must be used with DNA extracted from the following biological samples: Whole Blood EDTA. Collected samples must be shipped and stored at +2 - +8°C. Store the sample at -20°C if not used within 3 days.

# PRECAUTIONS USE

his kit is for in vitro diagnostic (IVD), for professional use only and not for in vivo use.

After reconstitution, the amplification master mix must be used in one time (12 reactions). Repeat thawing and freezing of reagents (more than twice) should be avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used

At all times follow Good Laboratory Practice (GLP) guidelines

Wear protective clothing such as laboratory coats and disposable gloves while assaving samples. Avoid any contact between hands and eyes or nose during specimens

collection and testing.

Handle and dispose all used materials into appropriate bio-hazard waste containers. It should be discarded according to local law.

Keep separated the extraction and the reagents preparation.

Never pipette solutions by mouth.

Avoid the air bubbles during the master mix dispensing. Eliminate them before starting amplification.

Wash hands carefully after handling samples and reagents. Do not mix reagents from different lots.

It is not infectious and hazardous for the health (see Material Safety data

Do not eat, drink or smoke in the area where specimens and kit reagents

Read carefully the instructions notice before using this test. Do not use beyond the expiration date which appears on the package

Do not use a test from a damaged protective wrapper.

# LIMIT OF THE METHOD

# Use only extracted DNA from Whole blood collected in EDTA

The extreme sensitivity of gene amplification may cause false positives due to cross-contamination between samples and controls. Therefore, you should:

- physically separate all the products and reagents used for amplification reactions from those used for other reactions, as well as from post-amplification products;
- use tips with filters to prevent cross-contamination between
- use disposable gloves and change them frequently:
- carefully open test tubes to prevent aerosol formation;
- close every test tube before opening another one.

The proper functioning of the amplification mix depends on the correct collection, correct transportation, correct storage and correct preparation of a biological sample.

As with any diagnostic device, the results obtained with this product must be interpreted taking in consideration all the clinical data and other laboratory tests done on the natient A negative result obtained with this product suggests that the DNA of the

four Plasmodium was not detected in DNA extracted from the sample, but it may also contain Plasmodium DNA at a lower titre than the detection limit for the product (detection limit for the product, see paragraph on Performance Characteristics); in this case the result would be

As with any diagnostic device, with this product there is a residual risk of obtaining invalid, false positives or false negatives results.

# STORAGE AND STABILITY

Store the product *Malaria Panel* at -20°C..
The *Malaria Panel* kit is shipped on dry ice. The kit components should

be frozen. An intact and well stored product has a stability of 12 months from the date of production. Do not use beyond the expiration date which appears on the package label. Repeat thawing and freezing of reagents (more than twice) should be

avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used intermittently.

# ANALYTICAL PROCEDURE

Ref. 51304/51306 - QIAmp DNA mini kit. (QIAGEN).

Follow the instructions inside the kit QIAmp DNA mini kit. Elute the sample in 50 µl of buffer AE

Samples are now ready for amplification or storage at -20°C

### Automatic Extraction (QIAGEN)

Ref. 62724 - EZ1 XL DSP Virus Kit on EZ1 Advanced XL.

### Procedure to Whole Blood

Follow the instructions inside the kit EZ1 XL DSP Virus Kit. Volume of sample to be used:

| Whole blood [µl] | ATL [μl] | Final volume Samples [μl] |
|------------------|----------|---------------------------|
| 200              | 200      | 400                       |

### Preparation of the Carrier

Solve completely the lyophilize RNA carrier in elution buffer (AVE), from 310  $\mu$ l, split in aliquots and store to –20 ± 5°C. Not thawing and freezing the aliquots more than 2 times.

For each analyzed sample, dilute 3,6 µl of a original solution include the RNA Carrier in total volume of 60 µl using elution buffer (AVE) Follow the instructions inside the kit EZ1 XL DSP Virus Kit.

Select the protocol starting from 400 µl of samples with the elution of 60

Samples are now ready for amplification or storage at -20°C

### Automatic Extraction (ZINEXTS)

Ref. ZP02001 - MagPurix Blood DNA Extraction Kit 200 on MagPurix 12A

### Procedure to Whole Blood

Follow the instructions inside the kit MagPurix Blood DNA Extraction Kit

Select the protocol starting from 200 µl of samples with the elution of 50

Samples are now ready for amplification or storage at -20°C.

### Manual extraction (SIEMENS)

Ref. 10629800 - VERSANT® Sample Preparation 1.2 Reagents kit box 1. Ref. 10629801 - VERSANT® Sample Preparation 1.2 Reagents kit box 2. Follow the instructions supplied by Siemens and elute it in 70  $\mu$ l of Elution buffer. Transfer 55 ul of eluted sample to an appropriately size tube.

Samples are now ready for amplification or storage at -20°C

### SOFTWARE SETTING

# Lifetechnologies 7500 fast

Turn the instrument and the computer on and open the control software. Click on "Advance Setup": by default the software will shows the page "experiment properties". Write in the "experiment name" the file name choose the type of instrument (7500 or 7500fast), the type of reaction (quantitation standard curve), the type of reagents used (Taqman®Reagents) and the analysis reaction time (Standard ≈ 2 hours to complete a run)

Open the page named "page setup" (sheet Define Target and Samples).

In the window Define Targets set:

| Target               | Reporter | Quencher |
|----------------------|----------|----------|
| P.falciparum probe:  | FAM      | NFQ      |
| P.ovale probe:       | VIC      | NFQ      |
| P.malariae probe:    | FAM      | NFQ      |
| P.vivax probe:       | VIC      | NFQ      |
| IC (β-globin) probe: | CY5      | NONE     |

# Set the samples' name in the window "Define Samples'

In the same page "plate setup" select the sheet "Assign Target and Samples". On the screen you will see the microplate draft

Select an area of the plate where the controls will be placed: P. falciparum and P.ovale controls: select wells of the plate and set the targets (falciparum probe, ovale probe and ßglobin probe). Select "Assign target to selected wells" in the blank, the "task Standard (S)" for falciparum and ovale targets.

Select an area of the plate where the controls will be placed: P. malariae and P.vivax controls: select wells of the plate and set the targets (malariae probe, vivax probe and Balobin probe), Select "Assign target to selected wells" in the blank, the "task Standard (S)" for malariae and vivax targets.

Choose an area in the plate where negative control will be placed: select "Assign target to selected wells" in the blank, the "task Negative (N)" for both mixes (falciparum/ovale and malariae/vivax). Select an area of the plate where samples will be placed: select for every

# sample two wells of the plate: Well 1: falciparum probe, ovale probe and βglobin probe

Well 2: malariae probe, vivax probe and βglobin probe Link every well to a sample, through the window "Assign samples to selected wells"

For each sample, select in the blank "Assign targets to selected wells" the "task UnKnown (U)" for the targets.

Set ROX as passive reference, using it as normalizer of detected

fluorescence Open "Run Method" (sheet Graphic View) and set the thermal cycling

as follows, with the "collect data" in annealing/extension phase:

| cycles denaturation |              | annealing/extension |
|---------------------|--------------|---------------------|
| 1                   | 50° C 2 min  |                     |
| 1                   | 95°C 10 min  |                     |
| 45                  | 95° C 15 sec | 60° C 1 min         |

In the window "Reaction volume plate per well" set a volume of 25 µl. After having prepared the plate, and correctly inserted in the instrument, press the button "Start Run"

# Rotor-Gene Q MDx

The experiments can be set using the Quick Start Wizard or the Advanced Wizard, which appears when the software is started. Select the wizard "Advanced". As a first step, select the model "Two Step Reaction" with a double click in the "New Run".

In the next window, select the type of rotor installed on the instrument from the list that appears. Check the "Locking Ring Attached", check the checkbox and then click "Next".

Enter the name of the operator and the reaction volume of 25  $\mu$ l, and then

In the next window click on "edit profile". Set the following thermal cycle:

| cycles | <u>denaturation</u> | annealing/extension |
|--------|---------------------|---------------------|
| 1      | 50° C 2 min         |                     |
| 1      | 95°C 10 min         |                     |
| 45     | 95° C 15 sec        | 60° C 1 min         |
|        |                     |                     |

Select the annealing / extension from the thermal profile and click on "Acquiring A to cycling."

In the next window, select vellow and red from the available channels and add it to acquiring channel along with the green channel and click "OK". In the next window click on "OK" and then click "Next".

Click on the "Edit Gain" and set the Gain for the three channels:

| <u>Reporter</u> | Gain |
|-----------------|------|
| Green           | 6    |
| Yellow          | 4    |
| Red             | 2    |

To begin the course, click on the button "Start Run". You can save the model before you begin your run by clicking on "Save Template".

After clicking on the button "Start Run" window appears "Save As". The

stroke can be saved in the desired position by the user Once the run started, the window "Edit Samples" allows you to set the name of samples and controls in the positions in which they were loaded

Select the locations where you placed the controls. Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "Positive control". Select the location where you placed the Negative Control and name it as Negative Control, Clicking on the box next to "Type" correspondent, in

the dropdown menu "Samples" you can select the type of sample being analysed. Select "Negative Controls" Select the location of each sample and enter the name or code of the patient. Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "UnKnown"

At the end of the operation, click "OK" in the "edit samples" and wait ntil the end of the race for the analysis (see "Interpretation of

## Versant kPCR AD or Stratagene MX3005P/MX3000P

urn the instrument on and wait until both green lamps have fixed light, turn on the computer and start the control software. In the principal screen will appear the window "New Experiment Options": "Experiment type": quantitative PCR (Multiple Standard).

Turn the lamp on 20 minutes before doing a new experiment. To turn the lamp on, click on the icon of the lamp in the tool bar or select "Lamp On" from the menu "Instruments". Verify the right setting of the gain of the fluorescent reporters: in the menu of settings, choose: "Instrument" and then "Filter set gain

| <u>Reporter</u> | <u>Gain</u> |
|-----------------|-------------|
| FAM             | 8           |
| HEX             | 4           |
| CY5             | 2           |
| DOV             | 4           |

Click on button "setup" in the toolbar and choose "Plate Setup". Sign the wells correspondent to positive controls P.falciparum and P.ovale. Define the control positions in the menu by setting:

Data: Dye: FAM/HEX/CY5/ROX ROX Clicking on every single well it will appear the window "well information". Choose the name of the positive control (*P.falciparum positive control* 

Collect Fluorescent Reference

and P.ovale positive control). It's possible to set the name of the dye near the name of the analysed

| <u>FAM</u>   | <u>HEX</u> | CY5      |
|--------------|------------|----------|
| P.falciparum | P.ovale    | β-Globin |

Click on button "setup" in the toolbar and choose "Plate Setup" Sign the wells correspondent to positive controls P.malariae and P.vivax. Define the control positions in the menu by setting:

|   | Well type:  | Collect Fluorescent | Reference | Replicate |
|---|-------------|---------------------|-----------|-----------|
|   | **          | Data.               | Dye:      | Symbol:   |
| 1 | Pos Control | EAM/HEY/CV5/POY     | POY       | Nono      |

Clicking on every single well it will appear the window "well information". Choose the name of the positive control (P.malariae positive control and P vivay positive control) It's possible to set the name of the dye near the name of the analysed

Identify the wells correspondent to Negative control. Define the Negative

control positions in the menu by setting Collect Fluorescent Reference Well type: Data: Dye: FAM/HEX/CY5/ROX ROX

Clicking on every single well will appear the window "well information and you can set NTC as the name.

Set near the name of the fluorescent reporters, the name of the analysed

| Menative | control | falcinarur | n/ovala | miv |  |
|----------|---------|------------|---------|-----|--|

| <u>FAM</u>   | <u>HEX</u> | CY5      |
|--------------|------------|----------|
| P.falciparum | P.ovale    | β-Globin |

| Negative control malariae | /vivax mix |            |
|---------------------------|------------|------------|
| <u>FAM</u>                | <u>HEX</u> | <u>CY5</u> |
| P malariae                | P vivax    | β₌Globin   |

Sign the wells correspondent to samples. Define the sample positions in the right menu, setting:

| Well type: | Collect Fluorescent<br>Data: | Reference<br>Dye: | Replicate<br>Symbol: |  |
|------------|------------------------------|-------------------|----------------------|--|
| known      | FAM/HEX/CY5/ROX              | ROX               | None                 |  |

Clicking on every single well it will appear the window "well information": it is possible to write in the name or the code of the sample

Set near the name of the fluorescent reporters, the name of the analysed

| FAM          | <u>HEX</u> | CY5      |
|--------------|------------|----------|
| D falcinarum | P ovalo    | P Clobin |

Clicking on a second well for the same sample, it will appear the window "well information"; it is possible to write in the name or the code of the

Set near the name of the fluorescent reporters, the name of the analysed

| targets:   | •          | ·        |
|------------|------------|----------|
| FAM        | <u>HEX</u> | CY5      |
| P.malariae | P.vivax    | ß-Globin |

In the toolbar choose the sheet "Thermal Profile Setup" and set thermal cycle as follows, with the "collect data" in annealing/extension phase:

| <u>cycles</u> | denaturation | annealing/extension |
|---------------|--------------|---------------------|
| 1             | 50° C 2 min  |                     |
| 1             | 95°C 10 min  |                     |
| 45            | 95° C 15 sec | 60° C 1 min         |

After preparing the plate and inserting it in the instrument, press the button "Run", selecting the sheet Thermal profile status and check the accuracy of the thermal profile Select the box **Turn Lamp Off** at the end of execution. Push the button

Start: the software will ask to indicate the name of saved file and will begin the analysis.

CFX 96 Real Time PCR Turn the instrument and the computer on and start the control software. In the principal screen will appear the window "Startup wizard": select "CFX96" and press "ok". In the next window push "create new" and set the thermal protocol and the reaction volume (25 µl), with the "collect data" in annealing/extension phase:

| cvcles | <u>denaturation</u> | annealing/extension |
|--------|---------------------|---------------------|
| 1      | 50° C 2 min         |                     |
| 1      | 95°C 10 min         |                     |
| 45     | 95° C 15 sec        | 60° C 1 min         |

Save the protocol and click the next button. The software will open in default the sheet "plate". Click "create new", select "Fluorophores button" to choose fluorophores (FAM, VIC and CY5). Select the locations where they were positioned the controls of known concentration and choose the "Sample Type" Standards. Click "Load" check boxes to load fluorophores and Type or select Target Name. Select the location where you placed the Negative Control. Choose the "Sample Type" NTC. Click "Load" check boxes to load fluorophores and Type or select

Target Name Select the location of each sample and enter the name or code of the patient. Choose the "Sample Type" Unknown. Click "Load" check boxes to load fluorophores and Type or select Target Name

Save the plate clicking the next button and start the experiment

mic Real Time PCR cycler Creating a New Assav

another Target.

The Assay contains information regarding the target amplicons and the qPCR conditions and the analysis type required for the assay along with various analysis parameters.

Select New from the tool bar menu and then Assay from the drop-down

In the windows Assay Setup click on Information

In the windows Information, select the Chemistry Type and choose **Hydrolysis Probes** Enter the name of the amplicon target and select the add button to setup

| Target Name        | 5' Modifier | 3' Modifier |
|--------------------|-------------|-------------|
| Falciparum/Malarie | FAM         | BHQ®-1      |
| Ovale/Vivax        | VIC         | BHQ®-1      |
| B-Globine          | CY5         | BHQ®-2      |

In the windows Assay Setup click on Profile

| Activation  | Cycling      | Cycles |
|-------------|--------------|--------|
| 50° C 2 min | 95° C 15 sec | 45     |
| 50°C 2 min  | 60° C 1 min  | 45     |
| Add Hold    |              |        |
| 0500 40:-   |              |        |

Select the Cycling (60°C 1 min) from the profile and click on (Acquire data)



In the window acquire on, check that are present the correct acquire channels (Green.Yellow and red)

In the Temperature Control choose standard Taq polymerase and in the Reaction Volume set a volume of 25 µl.

Save as the Malaria Panel Assay.

### Creating a New Run

Select **New** from the tool bar menu and then **Run** from the drop-down list Click on Assays and choose the Malaria panel Assay.

Click on mic Idle and choose start a run.

Save the Experiment and click Start Run in the dialogue box.

Once the run started, the window "Samples" allows you to set the name of samples and controls in the positions in which they were loaded on the instrument

Select the locations where you placed the controls.

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "Positive control"

Select the location where you placed the Negative Control and name it as Negative Control.

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "Negative Controls"

Select the location of each sample and enter the name or code of the

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select

### PREPARATION OF THE REACTIONS:

Defrost a tube of Amplification mMix;
Defrost a tube of falciparum/oyale probes Mix:

Defrost a tube of malariae/vivax probes Mix;

Mix carefully by vortex 175 ul of Amplification mMix and 105ul of falciparum/ovale probes Mix (the prepared master mix will allow to perform 12 reactions of amplification: 2 positive controls, 1 negative control and 9 samples.

Mix carefully by vortex 175 μl of Amplification mMix and 105μl of malariae/vivax probes Mix (the prepared master mix will allow to perform 12 reactions of amplification: 2 positive controls. 1 negative

Distribute, in the amplification plate, 20 µl of just reconstituted falciparum/ovale mix in chosen positions, as already setted on the

Distribute, in the amplification plate, 20 µl of just reconstituted malariae/vivax mix in chosen positions, as already setted on the instrument software.

Distribute, in the negative control position, 5  $\mu$ I of the negative control. Distribute, in chosen position for each sample, 5 µl of corresponding

Distribute, in chosen positions for the positive controls,  $5 \mu l$  of P.falciparum and P.ovale, P.malariae and P.vivax.
Seal up accurately the plate using an optical adhesive film and verify that there aren't air hubbles in the mix to avoid interferences in the

For the Rotor-Gene Q MDx, seal each tube with the appropriate caps; the presence of air bubbles is not influential on the test, because

centrifugal force of the rotor will allow automatic deletion. Transfer the plate in the instrument and push the button "Start Run".

# QUALITATIVE ANALYSIS

<u>Lifetechnologies 7500 Fast</u>
At the end of the PCR run, the software automatically opens the "Analysis" window in the "Amplification plot" sheet on the menu on the

Select the wells corresponding to the positive control negative control

Select in the "Option" window inside the "Target" pop-up menu the P.falciparum target. Check the correct setting of the threshold Select in the "Option" window inside the "Target" pop-up menu the

P.ovale target. Check the correct setting of the threshold Select in the "Option" window inside the "Target" pop-up menu the

P.malariae target. Check the correct setting of the threshold. Select in the "Option" window inside the "Target" pop-up menu the P.vivax target Check the correct setting of the thresh

Select in the "Option" window inside the "Target" pop-up menu the IC Control target. Check the correct setting of the threshold

The analysis of the results is made selecting from the menu in the left the

From the page "Amplification Plot" verify the amplification plot for every single sample

Opening the sheet "view well table" in the right side of the software it is possible to verify the data obtained from experiments: Threshold Cycles,

Clicking from the menu file and selecting the box export, the window "export properties" will open. Indicate the file name, select the position to save it (Browse) and click on button "Start export". In this way the software will permit to save an excel file with all the data corresponding to

At the end of the PCR run open the "Analysis" window Select the "Quantification" sheet and click on "cycling A (green)". Setting the graphic in "Linear scale"

Select from the menu "Dynamic Tube" and subsequently "Slope correct". Clic on "Outlier removal" e set up the "Percentage of largest FI change" at 5%.

Check the correct setting of the threshold in the space provided "CT calculation - Threshold

Select the "Quantification" sheet and click on "cycling A (yellow)".

Select from the menu "Dynamic Tube" and subsequently "Slope correct". Clic on "Outlier removal" e set up the "Percentage of largest

FI change" at 5%. Check the correct setting of the threshold in the space provided "CT calculation - Threshold"

Select the "Quantification" sheet and click on "cycling A (red)".

Setting the graphic in "Linear scale"
Select from the menu "Dynamic Tube" and subsequently "Slope correct". Clic on "Outlier removal" e set up the "Percentage of largest

Fil change" at 5%.
Check the correct setting of the threshold in the space provided "CT calculation - Threshold

Also in this case, you can print a report of the analysis by clicking on the 'Report" window and selecting the file in the first Quantification cycling A (green), then the file cycling A (yellow) and finally the file cycling

### Versant kPCR AD or Stratagene MX3005P/MX3000P

Click on button "Analysis" in the toolbar. The software will open in default the sheet "Analysis Term Setting". Activate the buttons FAM and HEX and CY5 in the lower part of the screen and select testing samples.
Select from the plate the wells corresponding to the positive control

negative control and samples in the analysis.

Click on sheet "**results**"; the software will open in default the page "Amplification plot". Check the correct setting of the threshold in the specific window "Threshold fluorescence", in the menu on the right of

Selecting the box Text report" from menu "Area to Analyze": in the right side of the screen it's possible to verify the data obtained from the experiments (Threshold Cycles, emitted Fluorescences etc..)

From the window Text Report it's possible to export the results obtained clicking file, export on main menu

<u>CFX96 real time PCR system</u>
At the end of the PCR, select the "quantitation" sheet. On the top of the screen, select "settings" from the menu and choose "Baseline

You can export the report pushing the paper block figure on the top of the

mic Real Time PCR cycler
At the end of the PCR run, select Cycling Analysis, the software will, by default, plot baseline-corrected curves as fluorescence (y-axis) against cycle number (x-axis), in logarithmic scale, for the target that was chosen.

In the window Analysis, click on Cycling and add the target

Falcinarum/Malarie In the window Parameters set the Method Dynamic Exclusion Extensive, remove auto set Threshold and setting the correct

In the window Analysis, click on Cycling and add the target Vivax/Ovale. In the window Parameters set the Method Dynamic, Exclusion Extensive. remove auto set Threshold and setting the correct Threshold

In the window Analysis, click on Cycling and add the target B-Globine. In the window Parameters set the Method Dynamic, Exclusion Extensive, remove auto set Threshold and setting the correct Threshold.

INTERPRETATION OF RESULTS
In the Real Time PCR reaction the Ct values of specific probe for P.falciparum, P.ovale, P.malariae and P.vivax are used for detect the presence of the Target in analysis.
Increase of fluorescence of specific probe for **P.falciparum (FAM)** in the

mix falciparum/ovale shows a positivity of the sample for P.falciparum. Increase of fluorescence of specific probe for **P.ovale (VIC)** in the mix falciparum/ovale shows a positivity of the sample for P.ovale.

Increase of fluorescence of specific probe for P.malariae (FAM) in the

mix malariae/vivax shows a positivity of the sample for P.malaria Increase of fluorescence of specific probe for P.vivax (VIC) in the mix malariae/vivax shows a positivity of the sample for P.vivax.

The samples that were present Ct values> 40 should be subjected to further verification as close to the limit of sensitivity of the system. As with any diagnostic device, the results obtained with this product must

be interpreted taking in consideration all the clinical data and other laboratory tests done on the patient. The use of positive and negative control in each amplification session

allows to verify the correct functioning of the amplification mix and the absence of any contamination. The instrument software is able to analyse the fluorescences that are emitted by the specific probe for P.falciparum (FAM), P.ovale (VIC/HEX),

P.malariae (FAM), P.vivax (VIC/HEX) and by the positive internal control A proper functioning of the amplification mix can be verified analysing

| Parametro                  | Riferimento |
|----------------------------|-------------|
| P.falciparum control (FAM) | Ct < 27     |
| P.ovale control (VIC)      | Ct ≤ 27     |
| P.malariae control (FAM)   | Ct ≤ 27     |
| P.vivax control (VIC)      | Ct ≤ 27     |

If the amplification reaction of each controls produces a Ct > 27, the session can't be considered valid and so it must be cancelled

Be sure that there isn't any specific fluorescence increasing for examining target in negative control (FAM/VIC/HEX).

In the amplification reaction of each sample, the Ct values for the internal

control ( $\beta$ -globin) specific probe are used for validating the analysis session beginning from extraction process until detection stage

A good extraction performances presents internal control (β-globin) threshold cycle between 22 and 25

Be sure that emitted fluorescence from internal control amplification has not a Ct > 28 or undetermined. If a sample presents an undetermined Malaria DNA and internal control Ct > 28 means that some problems happened in the extraction stage or in the amplification stage: therefore the sample could be a false negative. Repeat the sample

| Ī | Detector FAM    | Detector CY5           | Assay     | Sample        |
|---|-----------------|------------------------|-----------|---------------|
| ſ | Ct undetermined | Ct > 28 o undetermined | Not valid | Repeat        |
| ſ | Ct undetermined | Ct < 28                | Valid     | Negative      |
| ſ | Ct positivo     | Ct < 28                | Valid     | Positive      |
| ſ | Ct basso        | Ct > 28 undetermined   | Valid     | High Positive |

# PERFORMANCES

It is considered as analytical sensitivity the highest serum dilution (title) to which a positive sample can be diluted without that the system looses the ability to detect it as positive. The analytical sensitivity of the system was assessed by analysing plasmid DNA, quantified by spectrophotometric analysis, containing the genomic region of interest (18S Ribosomal RNA gene) of the protozoa in serial dilutions from 100.000 copies to 1 copy of DNA in 5ul of extracted material added in the amplification reaction

|           | Conc.       | 1 cps | 10 cps | 100.000 cps |
|-----------|-------------|-------|--------|-------------|
|           | N° Test     | 15    | 15     | 15          |
| P.falc.   | N° Positive | 0     | 15     | 15          |
|           | N° Negative | 15    | 0      | 0           |
|           | N° Test     | 15    | 15     | 15          |
|           | N° Positive | 0     | 15     | 15          |
|           | N° Negative | 15    | 0      | 0           |
|           | N° Test     | 15    | 15     | 15          |
| P.mal. N° | N° Positive | 0     | 15     | 15          |
|           | N° Negative | 15    | 0      | 0           |
|           | N° Test     | 15    | 15     | 15          |
| P.vivax   | N° Positive | 0     | 15     | 15          |
|           | N° Negative | 15    | 0      | 0           |

The analytical sensitivity allow to detect 10 copies of the DNA target added to the amplification reaction (2cps/µl), corrisponding to:

| Extraction  | Clonit        | Siemens       |
|-------------|---------------|---------------|
| Sensitivity | 500 copies/ml | 730 copies/ml |

Clinical sensitivity:
For the purposes of this evaluation is considered as clinical sensitivity the skill of determining true positives in the totality of positive screened samples. The analysis is made on P.falciparum, P.ovale, P.malariae and P.vivax positive samples and the test is performed following the method advices. Positive samples are confirmed with another disposable method.

| Sample      | P.falciparum | P.vivax | P.ovale | P.malariae |
|-------------|--------------|---------|---------|------------|
| n°          | 61           | 10      | 16      | 5          |
| Positive    | 60           | 10      | 16      | 5          |
| Negative    | 1            | 0       | 0       | 0          |
| Clinic.Sens | 98.36%       | 100%    | 100%    | 100%       |

# Diagnostic Specificity:

For the purposes of this evaluation is considered as diagnostic specificity the skill of the method of determining real negative samples. The diagnostic specificity of the system is valued analysing human genomic samples tested and confirmed as negative with another disposable

| Sa  | mple     | P.falciparum | P.vivax | P.ovale | P.malariae |
|-----|----------|--------------|---------|---------|------------|
|     | n°       | 30           | 30      | 30      | 30         |
| Po  | sitive   | 0            | 1       | 0       | 0          |
| Ne  | gative   | 30           | 29      | 30      | 30         |
| Spe | c.diagn. | 100%         | 97%     | 100%    | 100%       |

# Traceability versus NIBSC controls material

The NIBSC standard (NIBSC code 04/176, Version 3.0, Dated 09/05/2012) was established as the 1  $^{\rm st}$  WHO International Standard for P.falciparum, with an assigned potency of 1x10 $^{\rm g}$  International Units (IU) when reconstituted in 0.5 ml of nucelase-free water

| P.falciparum Positive Positive Positive P.malariae Negative Negative Negative P.ovale Negative Negative Negative Negative Negative Negative |              | 7500 fast | Rotorgene Q | Kpcr Versant |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|--------------|
| P.ovale Negative Negative Negative                                                                                                          | P.falciparum | Positive  | Positive    | Positive     |
|                                                                                                                                             | P.malariae   | Negative  | Negative    | Negative     |
| P vivay Negative Negative                                                                                                                   | P.ovale      | Negative  | Negative    | Negative     |
| r.vivax ; inegative ; inegative ; inegative                                                                                                 | P.vivax      | Negative  | Negative    | Negative     |

Ref: Padley DJ, Heath AB, Sutherlan C., Chiodini PL, Baylis SA; Collaborative Study Group Malaria. 2008 July 27:7:139. Establishment of the 1<sup>st</sup> WHO International Standard for P.falciparum DNA for nucleic acid amplification technique (NAT) based Assays.

# Analytical Specificity:

Test's specificity is guaranteed by the use of specific primers for determining P.falciparum, P.ovale, P.malariae and P.vivax.

The alignment of the choose regions for specific primers' hybridization for

P.falciparum, P.ovale, P.malariae and P.vivax demonstrated: their conservation, the absence of significative mutations and the complete specificity for the analysed target

INTERFERENCES: Verify that in the DNA extracted from the sample there is no contamination from mucoproteins and haemoglobin, to exclude possible inhibition of PCR reaction. The interference due to contaminants can be detected through a spectrophotometric analysis, verifying the ratio between the absorbance readings at 260 nm (maximum absorbtion of Nucleic Acids) and 280 nm (maximum absorbtion of Proteins). A pure DNA should have a ratio of approximately 1.8.

### QUALITY CONTROL

It is recommended to include in each analytical run, as quality control of every extraction, amplification and detection step, an already tested negative and positive sample, or a reference material with known

In accordance with the Clonit srl ISO EN 13485 Certified quality Management System, each lot of Malaria Panel is tested against predetermined specification to ensure consistent product quality.

### BIBLIOGRAPHY

entificazion of the four species of human malaria parasites by nested PCR that targets variant sequences in the small subunit rRNA gene Masatsugu Kimura, Osamu Kaneko, Qing Liu, Mian Zhou, Fumihiko Kawamoto, Yusuke Wataya, Shuzo Otani, Yoshiko Yamaguchi, Kazuvuki Tanabe, Parasitology International 46 (1997) 91-95.

High prevalence of Plasmodium malariae infections in a Brazilian Amazon endemic area (Apiacàs-Mato Grosso Stato) as detected by nolymerase chain reaction, Kezia K.G. Sconel, Cor. J.F. Fontes, Alvaro C. Nunes, M. Fatima Horta, Erika M. Braga. Acta Tropica 90 (12004) 61-64

Malaria diagnosis from pooled blood samples: comparative analysis of real-ime PCR, nested PCR and immunoassay as a platform for the molecular and serological diagnosis of malaria on a large-scale. Giselle FMC Lima, Josè E Levi, Marcelo P Geraldi, Maria Carmen A Sanchez, Aluisio AC Segurado, Angélica D Hristov, Juliana Inoue, Maria de jesus Costa-Nascimento, Silvia M Di Santi. Memorias do Istituto Oswaldo Cruz Journal, Rio de Janeiro, Vol 106(6): 691-700, Sept. 2011.

High-throughput Pooling and real-time PCR-based strategy for malaria detection, Steve M Taylor, Jonathan J Juliano, Paul A Trottman, Jennifer B Griffin Sarah H Landis Paluku Kitsa Antoniette K Tshefu and Steven R Meshnick. Journal of Clinical Microbiology, Feb. 2010 p. 512-

Comparision of three molecular methods for the detection and speciation of Plamosdium vivax and Plasmodium falciparum. Prapaporn Boonma, Peter R Christensen, Rossarin Suwanarusk, Ric N price, Bruce Russel and Usa Lek-Uthai, Malaria Journal 2007, 6:124

# TECHNICAL ASSISTANCE

For any question and support please contact our Technical support:

e-mail: info@clonit.it phone: +39 02 56814413

| In vitro diagnostic device            |  |
|---------------------------------------|--|
| Read the instruction's manual         |  |
| Range of temperature                  |  |
| Use within (dd/mm/yyyy: year-month)   |  |
| Lot (xxxx)                            |  |
| Code                                  |  |
| Manufacturer                          |  |
| Contains sufficient for <n> tests</n> |  |
|                                       |  |

FDMA code: 15051009 CND: W0105050299

The Malaria Panel kit is CE marked diagnostic kit according to the European in vitro diagnostic directive 98/79/CE



CLONIT S.r.I.

Headquarter: Via Varese 20 - 20121 Milano Production Site: Via Lombardia 6 - 27010 Siziano (PV) - Italy Tel. + 39. (0)2.56814413 fax. +39. (0)2. 56814515 www.clonit.it - info@clonit.it



ST.RT61-ENG.10 Revision 20th January 2021