

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Malaria screening

REF: RT-66 Detection of the P.falciparum, P.malariae, P.vivax, P.ovale and P. knowlesi genome with Real Time PCR

INTRODUCTION AND PURPOSE OF USE

The system Malaria screening is a qualitative test that allows the DNA amplification and detection, by means of Real Time PCR, of P.falciparum, P.malariae, P.vivax, P.ovale and P. knowlesi genome correctly extracted by biological samples, without species discrimination. The Procedure allows the detection of the DNA target by means a

genomic amplification reaction. The analysis of the results is made using a Real Time PCR analyzer

(thermal cycler integrated with a system for fluorescence detection and a dedicated software)

CONTENT

ntains reagents enough to perform 48 amplification tests

	Quantity	Description
R1	3 x 220 µl	Amplification mMix dNTPs, Tris-HCI, KCI, MgCl ₂ , Taq Polymerase, <i>AmpErase</i> Uracil N-Glycosylase (UNG) Nuclease-free water, ROX (Pink Cap)
R2	3 x 130 μl	Plasmodium probes Mix Upstream primer, downstream primer, Target probe (FAM), Internal control (β-globin) Probe (VIC) Nuclease- free water (White cap)
R3	3 x 35 μl	Plasmodium High concentration
R4	3 x 35 μl	Plasmodium Low concentration
R5	1 x 30 μl	Negative Control

Instruction for use: ST.RT66-ENG.9

MATERIALS AND STRUMENTATION REQUIRED BUT NOT SUPPLIED

Disposable latex powder-free gloves or similar material Bench microcentrifuge (12,000 - 14,000 rpm); Micropipettes and Sterile tips with aerosol filter Vortex Plastic materials (microplate and optica adhesive cover); Heat block (only for extraction) Dry block shacker for 1.5ml conical tubes Magnetic rack for 1.5ml conical tubes EZ1 Advanced XL DSP Virus Card. - Ref. 9018703 - QIAGEN. ATL Buffer - Ref. 939016 - QIAGEN.

Reagents

e Malaria screening kit was developed and validated to be used with the following extraction method:

Manual Extraction

Ref. 51304/51306

QIAmp DNA mini kit. The kit allows the DNA extraction from tested samples. The kit contains reagents for 50/250 samples.(QIAGEN).

Automatic Extraction

Ref. 62724, EZ1 XL DSP Virus Kit The kit allows the automatic viral DNA from Human samples. The kit contains reagents for 48 samples. (QIAGEN)

Ref ZP02001 MagPurix Blood DNA Extraction Kit 200 The kit allows the automatic viral DNA from Human samples The kit contains reagents for 48 samples. (ZINEXTS LIFE SCIENCE CORP)

Manual/Automatic extraction (Siemens)

10629800 - VERSANT® Sample Preparation 1.2 Reagents kit box 1. The kit allows the manual DNA extraction from Human samples. The kit contains reagents enough to perform the DNA extraction for 96 samples.

10629801 - VERSANT® Sample Preparation 1.2 Reagents kit box 2. The kit allows the manual DNA extraction from Human samples. The kit contains reagents enough to perform the DNA extraction for 96 samples.

Instruments

e Malaria screening kit was developed and validated to be used with the following instruments:

Extraction System

Ref. 9001492. EZ1 Advanced XL. Robotic Workstation for the automatic purification of the nucleic acids until 14 samples simultaneously (QIAGEN)

Ref. ZP01005. MagPurix 12A.

Robotic Workstation for the automatic purification of the nucleic acids until 12 samples simultaneously (ZINEXTS LIFE SCIENCE CORP)

Real Time PCR

The Malaria screening kit was developed and validated to be used with the following real time PCR instruments:

- 7500 Fast from Lifetechnologies
- StepOne Plus from Lifetechnologies

Rotor-Gene Q MDx from QIAGEN

Versant kPCR AD from Siemens or Stratagene MX3005P/MX3000P

- CEX96 Real Time PCR System from BioRad mic Real Time PCR cycler from Bio Molecular System

Please ensure that the instruments have been installed calibrated checked and maintained according to the manufacturer's instruction and raccommendations

SAMPLES AND STORAGE

The Malaria screening, system must be used with extracted DNA from the following biological samples: whole Blood EDTA. Collected samples must be shipped and stored at +2 - +8°C and used within 3 days from the collected data Store the sample at -20°C if it is used after 3 days.

PRECAUTIONS USE This kit is for in vitro diagnostic (IVD), for professional use only and not for

in vivo use After reconstitution, the amplification master mix must be used in one time (16 reactions). Repeat thawing and freezing of reagents (more than twice) should be avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used intermittently. At all times follow Good Laboratory Practice (GL quidelines

Wear protective clothing such as laboratory coats and disposable gloves while assaving samples.

Avoid any contact between hands and eyes or nose during specimens

collection and testing. Handle and dispose all used materials into appropriate bio-hazard waste containers. It should be discarded according to local law.

- Keep separated the extraction and the reagents preparation.
- Never pipette solutions by mouth.

Avoid the air bubbles during the master mix dispensing. Eliminate them before starting amplification.

Wash hands carefully after handling samples and reagents. Do not mix reagents from different lots.

It is not infectious and hazardous for the health (see Material Safety data

Sheet - MSDS) Do not eat, drink or smoke in the area where specimens and kit reagents

are handled Read carefully the instructions notice before using this test.

Do not use beyond the expiration date which appears on the package

Do not use a test from a damaged protective wrapper

LIMIT OF THE METHOD

Use only extracted DNA from Whole blood collected in EDTA. Do not use contaminated DNA with extracted mucoproteins or hemoglobin: the latter inhibit the amplification reaction of nucleic acids

and may cause invalid results The extreme sensitivity of gene amplification may cause false positives

due to cross-contamination between samples and controls. Therefore you should:

- physically separate all the products and reagents used for amplification reactions from those used for other reactions, as well as from post-amplification products:
- use tips with filters to prevent cross-contamination between
- samples: use disposable gloves and change them frequently:
- carefully open test tubes to prevent aerosol formation;
- close every test tube before opening another one

The proper functioning of the amplification mix depends on the correct collection, correct transportation, correct storage and correct preparation of a biological sample

As with any diagnostic device, the results obtained with this product must be interpreted taking in consideration all the clinical data and other laboratory tests done on the patient.

A negative result obtained with this product suggests that the DNA of Malaria was not detected in DNA extracted from the sample, but it may also contain Malaria DNA at a lower titre than the detection limit for the product (detection limit for the product, see paragraph on Performance Characteristics); in this case the result would be a false negative. As with any diagnostic device, with this product there is a residual risk of obtaining invalid, false positives or false negatives results.

STORAGE AND STABILITY

Store the product *Malaria screening* at -20°C.. The *Malaria screening* kit is shipped on dry ice. The kit components should be frozen

If one or more components are not frozen upon receipt or if the tubes have been compromised during transport, contact Clonit srl for assistance.

An intact and well stored product has a stability of 12 months from the date of production. Do not use beyond the expiration date on the package label.

Repeat thawing and freezing of reagents (more than twice) should be avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used intermitte

ANALYTICAL PROCEDURE

anual Exraction Ref. 51304/51306 - QIAmp DNA mini kit. (QIAGEN)

Procedure to Whole blood

Follow the instructions inside the kit QIAmp DNA mini kit. Elute the sample in 50 μ l of buffer AE

Samples are now ready for amplification or storage at -20°C

Automatic extraction (QIAGEN) Ref. 62724 - EZ1 XL DSP Virus Kit on EZ1 Advanced XL

Procedure to Whole Blood

Follow the instructions inside the kit EZ1 XL DSP Virus Kit. Volume of sample to be used:

Whole blood [µl]	ATL [μl]	Final volume Samples [µl]
200	200	400

Preparation of the Carrier

Solve completely the lyophilize RNA carrier in elution buffer (AVE), from 310 µl, split in aliquots and store to $-20 \pm 5^{\circ}$ C. Not thawing and fre the aliquots more than 2 times.

For each analyzed sample, dilute 3,6 µl of a original solution include the RNA Carrier in total volume of 60 µl using elution buffer (AVE) Follow the instructions inside the kit EZ1 XL DSP Virus Kit. Select the protocol starting from 400 μ l of samples with the elution of 60

Samples are now ready for amplification or storage at -20°C

Automatic Extraction (ZINEXTS)

Ref. ZP02001 - MagPurix Blood DNA Extraction Kit 200 on MagPurix 12A

Procedure to Whole Blood Follow the instructions inside the kit MaaPurix Blood DNA Extraction Kit

200 Select the protocol starting from 200 µl of samples with the elution of 50

Samples are now ready for amplification or storage at -20°C

Manual extraction (SIEMENS)

Ref. 10629800 - VERSANT® Sample Preparation 1.2 Reagents kit box 1. Ref. 10629801 - VERSANT® Sample Preparation 1.2 Reagents kit box 2. Follow the instructions supplied by Siemens and elute it in 70 ul of Elution buffer. Transfer 55 µl of eluted sample to an appropriately size tube.

Samples are now ready for amplification or storage at -20°C

SOFTWARE SETTINGS:

for the Plasmodium target.

cycles

press the button "Start Run"

the checkbox and then click "Next".

'Acquiring A to cycling."

click "Next"

Lifetechnologies 7500 fast/StepOne plus Turn the instrument and the computer on and open the control software. Click on "Advance Setup": by default the software will shows the page "experiment properties". Write in the "experiment name" the file name, choose the type of instrument (7500 or 7500fast / StepOne or StepOne Plus), the type of reaction (quantitation standard curve), the type of reagents used (Taqman®Reagents) and the analysis reaction time (Standard \approx hours to complete a run). Open the page named "page setup" (sheet Define Target and

In the window **Define Targets** set:

Reporter Target Quencer nodium probe FAM TAMRA IC (β-globin) probe:

In the same page "plate setup" select the sheet "Assign Target and

Select an area of the plate where the controls will be placed select wells

of the plate and set both targets (Plasmodium and β-globin). Select

"Assign target to selected wells" in the blank. the "task Standard (S)"

Choose an area in the plate where negative control will be placed: select

Assign target to selected wells" in the blank, the "task Negative (N)"

Select an area of the plate where samples will be placed: select the wells

and set both targets (Plasmodium and B-globin). Link every well to a

For each sample, select in the blank "Assign targets to selected wells"

Set ROX as passive reference, using it as normalizer of detected

Open "Run Method" (sheet Graphic View) and set the thermal cycling

In the window "Reaction volume plate per well" set a volume of 25µl.

After having prepared the plate, and correctly inserted in the instrument.

 $\frac{Rotor-Gene \; Q\; MDx}{The \; experiments \; can \; be \; set \; using \; the \; Quick \; Start \; Wizard \; or \; the }$

Select the wizard "Advanced". As a first step, select the model "Two

n the next window, select the type of rotor installed on the instrument

from the list that appears. Check the "Locking Ring Attached", check

Enter the name of the operator and the reaction volume of 25μ l, and then

In the next window click on "edit profile". Set the following thermal cycle:

cycles denaturation annealing/extension

Select the annealing / extension from the thermal profile and click on

Advanced Wizard which appears when the software is started

Step Reaction" with a double click in the "New Run".

50° C 2 min 95°C 10 min

95° C 15 sec

10 min

denaturation annealing/extension

60° C 1 min

60° C 1 min

sample, through the window "Assign samples to selected wells"

as follows, with the "collect data" in annealing/extension phase

50° C 2 min 95°C 10 min

95° C 15 sec

Set the samples' name in the window "Define Samples'

Samples". On the screen you will see the microplate draft.

for Plasmodium target and set the controls' concentration.

the "task UnKnown (U)" for the Plasmodium target.

In the next window, select vellow from the available channels and add it to acquiring channel along with the green channel and click "OK". In the next window click on "OK" and then click "Next".

Click on "Edit Gain" button and set the following values for each channel:

Reporter

Green Yellow

on the instrument

model before you begin your run by clicking on "Save Template"

user can save the stroke in the desired position.

Versant kPCR AD O Stratagene MX3005P/MX3000P

"Experiment type": quantitative PCR (Multiple Standard).

analyzed, Select "Negative Controls"

analyzed Select "Linknown'

Reporter

HFX

POY

positions in right menu, setting:

control positions in the menu by setting:

and you can set NTC as the name.

Well type:

Well type:

Well type:

annealing/extension step

cycles

correctness of thermic profile.

data" in annealing/extension phase:

will begin the analysis.

CFX 96 Real Time PCR

NTC

Unknown

target:

Pos. Control FAM

settina".

To begin the course, click on the button "Start Run". You can save the

After clicking on the button "Start Run" window appears "Save As". The

Once the run started, the window "Edit Samples" allows you to set the name of samples and controls in the positions in which they were loa

Select the locations where you placed the controls. Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can type of sample being analyzed. Select "Positive control Select the location where you placed the Negative Control and name it as

Negative Control. Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being Select the location of each sample and enter the name or code of the

patient. Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being

the end of the operation, click "OK" in the "edit samples" and wait until the end of the race for the analysis (see "Interpretation of

urn the instrument on and wait until both green lamps have fixed light. turn on the computer and start the control software. In the principal screen will appear the window "New Experiment Options": select

Turn the lamp on 20 minutes before doing a new experiment. For turning the lamp on, click on the icon of the lamp in the tool bar or select "Lamp

On" from the menu "Instruments". menu of settings, choose: "Instrument" and then "Filter set gain

Gain

Dye:

ROX

Reference

Reference

annealing/extens

60° C 1 mir

Collect Fluorescent Reference

Data: FAM/HEX/ROX

Collect

Collect

correct thermal cycle and reading the fluorescence in the

denaturation

50° C 2 min

95°C 10 min

95° C 15 sec

and you can insert the name or the code of the sample.

Click on button "setup" in the toolbar and choose "Plate Setup" Sign the wells correspondent to calibrators. Define the calibrator's

> Symbol: None

Clicking on every single well will appear the window "well information and you can choose the name of the positive control (*Plasmodium High* Control and Plasmodium Low Control).

Identify the wells correspondent to Negative control. Define the Negative

Fluorescent Data: Dye: Symbol: FAM/HEX/ROX ROX None

Clicking on every single well will appear the window "well information"

Sign the wells correspondent to samples (2 wells for samples). Define the sample positions in right menu, setting:

Fluorescent Data: Dye: Symbol: FAM/HEX/ROX ROX None

Clicking on every single well will appear the window "well information"

It's possible to set the name of the dve near the name of the analyzed

FAM	HEX
Plasmodium	β-Globin
In the tool bar choose the sheet	"Thermal Profile Setup" and set the

on				
<u></u>				2
				-
	•••	•••	••	•

After making the plate and inserting it in the instrument, press the button "Run", selecting the sheet Thermal profile status and check the

Select the box Turn Lamp Off at the end of execution. Push the button Start: the software will ask you to indicate the name of save the file and

Turn the instrument and the computer on and start the control software. In the principal screen will appear the window "Startup wizard": select "CFX96" and press "ok". In the next window push "create new" and set the thermal protocol and the reaction volume $(25\mu l)$, with the "collect cvcles denaturation 50° C 2 min 95°C 10 min 95°C 15 sec

Save the protocol and click the next button. The software will open in default the sheet "plate". Click "create new", select "Fluorophores button" to choose fluorophores (FAM and VIC). Select the locations where they were positioned the controls of known concentration and choose the "Sample Type" Standards. Click "Load" check boxes to load fluorophores and Type or select Target Name. Select the location where you placed the Negative Control. Choose the "Sample Type" NTC. Click "Load" check boxes to load fluorophores and Type or select Target Name

Select the location of each sample and enter the name or code of the patient. Choose the "Sample Type" Unknown. Click "Load" check boxes to load fluorophores and Type or select Target Name Save the plate clicking the next button and start the experiment

mic Real Time PCR cycler

Creating a New Assav

The Assay contains information regarding the target amplicons and the qPCR conditions and the analysis type required for the assay along with various analysis parameters

Select New from the tool bar menu and then Assav from the drop-down

In the windows Information, select the Chemistry Type and choose Hydrolysis Probes

Enter the name of the amplicon target and select the add button to setup another Target

Target Name	5' Modifier	3' Modifier			
Plasmodium	FAM	BHQ®-1			
B-Globine	VIC	BHQ®-1			

In the windows Assay Setup click on Profile

Activation	Cycling	Cycles
50° C 2 min	95° C 15 sec	45
50 C 2 min	60° C 1 min	45
Add Hold		
95°C 10 min		

Select the Cycling (60°C 1min) from the profile and click on (Acquire data)

In the window acquire on, check that are present the correct acquire channels (Green and Yellow)

In the Temperature Control choose standard Taq polymerase and in the Reaction Volume set a volume of 25 µl. Save as the Malaria Screening Assav.

Creating a New Run

Select New from the tool bar menu and then Run from the drop-down list Click on Assays and choose the Malaria Screening Assay. Click on mic Idle and choose start a run.

Save the Experiment and click Start Run in the dialogue box. Once the run started, the window "Samples" allows you to set the name of samples and controls in the positions in which they were loaded on the instrument.

Select the locations where you placed the controls.

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "Positive control"

Select the location where you placed the Negative Control and name it as Negative Control.

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "Negative Controls"

Select the location of each sample and enter the name or code of the natient.

Clicking on the box next to "Type" correspondent, in the dropdown menu "Samples" you can select the type of sample being analysed. Select "UnKnown"

PREPARATION OF THE REACTIONS: Defrost a tube of Amplification mMix; Defrost a tube of Plasmodium probes Mix;

Mix carefully by vortex 210µl of Amplification mMix and 126µl of Plasmodium probes Mix (the mix as produced is enough to prepare 16 reactions of amplification: 2 positive controls. 1 negative control and 13 samples).

Distribute in the amplification plate 20ul of just reconstituted mix in chosen positions, as already set on the instrument software. Distribute, in the negative control position, $5\mu l$ of the negative control.

Distribute, in chosen position for each sample, 5ul of corresponding sample.

Distribute, in chosen positions for the positive controls, 5ul of low control and high control.

Seal up accurately the plate using an optical adhesive film and verify that there aren't air bubbles in the mix, to avoid interferences in the amplification

For the Rotor-Gene O MDx seal each tube with the appropriate cap. The air bubbles presence is not influently; the rotor centrifugal force will allow automatic deletion.

Transfer the plate in the instrument and push the button "Start Run".

Select Assay Setup and click on Information.

QUALITATIVE ANALYSIS

Lifetechnologies 7500 Fast, StepOne Plus. At the end of the PCR run, the software automatically opens the "Analysis" window in the "Amplification plot" sheet on the menu on the

Select the wells corresponding to the positive control, negative control and samples for analysis. Select in the "Option" window inside the "Target" pop-up menu the

Plasmodium target. Check the correct setting of the threshold. Select in the "Option" window inside the "Target" pop-up menu the IC Control target. Check the correct setting of the threshold

The analysis of the results is made selecting from the menu in the left the page "Analysis

From the page "Amplification Plot" verify the amplification plot for every single sample

Opening the sheet "view well table" in the right side of the software it is possible to verify the data obtained from experiments: Threshold Cycles, emitted fluorescences etc... Clicking from the menu file and selecting the box export, the window

"export properties" will open. Indicate the file name, select the position to save it (Browse) and click on button "Start export". In this way the software will permit to save a excel file with all the data corresponding to selected experiment.

<u>Rotor-Gene Q MDx</u> At the end of the PCR run open the "Analysis" window. Select the At the end of the FOK full open the Financial ministration of the first of the firs correct"

Check the correct setting of the threshold in the space provided "CT calculation - Threshold".

Open the "Analysis" window. Select the "Quantification" sheet and click on "cycling A (yellow)". Select from the menu "Dynamic Tube" and subsequently "Slope

correct" Enter in the space provided "CT calculation – Threshold" the threshold

value indicated in the table

Also in this case, you can print a report of the analysis by clicking on the "Report" window and selecting the file in the first Quantification cycling A (green) and then the file cycling A (yellow).

Versant kPCR AD o Stratagene MX3005P/MX3000P Click on button "Analysis" in the toolbar. The software will open in default the sheet "Analysis Term Setting". Activate the buttons FAM and HEX in the lower part of the screen and select testing samples. Click on sheet "**results**"; the software will open in default the page

"Amplification plot". Check the correct setting of the threshold in the specific window "Threshold fluorescence", in the menu on the right of the screen

Selecting the box Text report" from menu "Area to Analyze": in the right side of the screen it's possible to verify the data obtained from the experiments (Threshold Cycles, emitted Eluorescences etc.) From the window **Text Report** it's possible to export the results obtained clicking file, export on main menu

<u>CFX96 Real Time PCR System</u> At the end of the PCR, select the "quantitation" sheet. On the top of the screen, select "settings" from the menu and choose "Baseline Threshold..." for both the parameters (Plasmodium and IC): You can export the report pushing the paper block figure on the top of the screen

mic Real Time PCR cycler At the end of the PCR run, select Cycling Analysis, the software will, by default, plot baseline-corrected curves as fluorescence (v-axis) against cycle number (x-axis), in logarithmic scale, for the target that was chosen.

In the window Analysis, click on Cycling and add the target

Plasmodium. In the window Parameters set the Method Dynamic Exclusion Extensive, remove auto set Threshold and setting the correct Threshold.

In the window Analysis, click on Cycling and add the target B-Globine. In the window Parameters set the Method Dynamic, Exclusion Extensive, remove auto set Threshold and setting the correct Threshold.

INTERPRETATION OF RESULTS In the Real Time PCR reaction the Ct values of specific probe for Plasmodium are used for detect the presence of the Target in analysis. Fluorescence increase of the specific probe for **Plasmodium** (FAM) indicates the positivity of the sample for the target in exam.

The samples that were present Ct values> 40 should be subjected to further verification as close to the limit of sensitivity of the system. As with any diagnostic device, the results obtained with this product must be interpreted taking in consideration all the clinical data and othe laboratory tests done on the patient.

The use of positive and negative control in each amplification session allows to verify the correct functioning of the amplification mix and the absence of any contamination. The instrument software is able to analyze the fluorescences that are

emitted by the specific probe for **Plasmodium** (FAM) and by the specific probe for the positive internal control (β -globin VIC). A proper functioning of the amplification mix can be verified analyzing these parameters:

Parameters	Ref.
Conc. High control (FAM)	Ct ≤ 27
Conc. Low control (FAM)	Ct ≤ 33

If the amplification reaction of each controls produces a Ct > 27 the session can't be considered valid and so it must be cancelled. Be sure that there isn't any specific fluorescence increasing for examining target in negative control (FAM).

In the amplification reaction of each sample, the Ct values for the internal control (B-globin) specific probe are used for validating the analysis session. Beginning from extraction process until detection step. A good extraction performances presents internal control (β-globin) threshold cycle between 22 and 25. Be sure that emitted fluorescence from internal control amplification has

not a Ct > 28 or undetermined. If a sample presents an undetermined Plasmodium DNA and internal control Ct >28 means that some problems happened in the extraction step or in the amplification step; therefore the sample could be a false negative. Repeat the sample.

Detector FAM	Detector VIC/JOE	Assay	Sample
Ct undetermined	Ct > 28 o undetermined	Not valid	Repeat
Ct undetermined	Ct < 28	Valid	Negative
Ct positivo	Ct < 28	Valid	Positive
Ct basso	Ct > 28 undetermined	Valid	High Positive

PERFORMANCES Analytical sensitivity

Limit of sensitivity For the purposes of this evaluation is considered as analytical sensitivity the highest serum dilution (title) to which a positive sample can be subjected without the system losing the ability to detect it as positive. The analytical sensitivity of the system was assessed by analyzing plasmid DNA, quantified by spectrophotometric analysis, containing the genomic region of interest (18S Ribosomal RNA gene) of the 4 plasmodium in serial dilutions from 100.000 copies to 1 copy of DNA in 5µl of extracted material added in the amplification reaction

	Conc.	1cps	10cps	100.000cps
	N° Test	15	15	15
P.falc.	N° Positive	0	15	15
	N° Negative	15	0	0
	N° Test	15	15	15
P.mal.	N° Positive	0	15	15
	N° Negative	15	0	0
	N° Test	15	15	15
P.ovale	N° Positive	0	15	15
	N° Negative	15	0	0
	N° Test	15	15	15
P.vivax	N° Positive	0	15	15
	N° Negative	15	0	0

The analytical sensitivity allow to detect 10 copies of extracted Plasmodium DNA added to the amplification reaction, corrisponding to:

Extraction	Clonit	Siemens
A.Sensitivity	500 copies/ml	730 copies/ml

Clinical sensitivity: For the purposes of this evaluation is considered as clinical sensitivity the skill of determining true positives in the totality of positive screened samples. The analysis is made on P.falciparum, P.malariae, P.vivax and P.ovale positive samples and the test is performed following the method advices. Positive samples are confirmed with another disposable method.

Samples		N	Positive
EDTA blood	P.falc.	61	61
EDTA blood	P.mal	5	5
EDTA blood	P.ovale	16	16
EDTA blood	P.vivax	10	10

Obtained results show a clinical sensitivity of 100%

Diagnostic Specificity:

For the purposes of this evaluation is considered as diagnostic specificity the skill of the method of determining real negative samples. The diagnostic specificity of the system is valued analyzing human genomic samples tested and confirmed as negative with another disposable

Samples	N	Positive	Negative
Donors' EDTA blood	20	0	20

Diagnostic specificity is 100% for material extracted from EDTA blood.

Analytical Specificity:

Test's specificity is guaranteed by the use of specific primers for determining P.falciparum, P.malariae, P.vivax, P.ovale and P. knowlesi The alignment of the choose regions for specific primers' hybridization for malaria plasmodium with available sequences of the 18S Ribosomal RNA gene region present in database demonstrated their conservation the sence of significative mutations and the complete specificity for the analyzed target.

Traceability versus NIBSC controls material

The NIBSC standard (code 04/176, Version 3.0, Dated 09/05/2012) was established as the 1^{st} WHO International Standard for Plasmodium falciparum DNA. It consists of a freeze-dried whole blood preparation collected from a partient transfusion

	7500 Fast	StepOne	MX3000P	Rotor-Q	CFX96	micPCR	Expected
WHO standard	Positive	Positive	Positive	Positive	Positive	Positive	Positive

INTERFERENCES:

Verify that in the DNA extracted from the sample there is no contamination from mucoproteins and haemoglobin, to exclude possible

inhibition of PCR reaction. The interference due to contaminants can be detected through a spectrophotometric analysis, verifying the ratio between the absorbance readings at 260 nm (maximum absorbtion of Nucleic Acids) and 280 nm (maximum absorbtion of Proteins). A pure DNA should have a ratio of approximately 1.8.

QUALITY CONTROL

It is recommended to include in each analytical run, as quality control of every extraction, amplification and detection step, an already tested negative and positive sample, or a reference material with known concentration.

In accordance with the Clonit srl ISO EN 13485 Certified quality Management System, each lot of Malaria screening is tested against predetermined specification to ensure consistent product quality

BIBLIOGRAPHY

Masatsugu Kimura, Osamu Kaneko, Qing Liu, Mian Zhou, Fumihiko Kawamoto, Yusuke Wataya, Shuzo Otani, Yoshiko Yamaguchi, Kazuyuki Tanabe. "Identificazion of the four species of human malaria parasites by nested PCR that targets variant sequences in the small subunit rRNA gene". Parasitology International 46 (1997) 91-95.

Kezia K.G. Scopel, Cor J.F Fontes, Alvaro C. Nunes, M. Fatima Horta, Erika M. Braga. "High prevalence of Plasmodium malariae infections in a Brazilian Amazon endemic area (Apiacàs-Mato Grosso Stato) as detected by polymerase chain reaction". Acta Tropica 90 (12004) 61-

Giselle FMC Lima, Josè E Levi, Marcelo P Geraldi, Maria Carmen A Sanchez, Aluìsio AC Segurado, Angèlica D Hristov, Juliana Inoue, Maria de jesus Costa-Nascimento, Silvia M Di Santi. "Malaria diagnosis from de jesus Costa-Nascimento, Silvia M Di Santi. *Malaria diagnosis from* pooled blood samples: comparative analysis of real-ime PCR, nested PCR and immunoassay as a platform for the molecular and serological diagnosis of malaria on a large-scale". Memorias do Istituto Oswaldo Cruz Journal, Rio de Janeiro, Vol 106(6): 691-700, Sept. 2011

Steve M Taylor, Jonathan J Juliano, Paul A Trottman, Jennifer B, Griffin, Sarah H. Landis, Paluku Kitsa, Antoniette K. Tshefu, and Steven R. Meshnick. "High-throughput Pooling and real-time PCR-based strategy for malaria detection. Journal of Clinical Microbiology". Feb 2010 n 512-519

Prapaporn Boonma, Peter R Christensen, Rossarin Suwanarusk, Ric N price, Bruce Russel and Usa Lek-Uthai. Comparision of three molecular methods for the detection and speciation of Plamosdium vivax and Plasmodium falciparum. Malaria Journal 2007, 6:124

TECHNICAL ASSISTANCE For any question and support please contact our Technical support:

e-mail: info@clonit.it

phone: +39 02 56814413

IVD	In vitro diagnostic device		
Ĺ	Read the instruction's manual		
ľ	Range of temperature		
	Use within (dd/mm/yyyy: year-month)		
LOT	Lot (xxxx)		
REF	Code		
	Manufacturer		
Σ	Contains sufficient for <n> tests</n>		

EDMA code: 15051009 CND: W0105050299

The *Malaria screening* kit is CE marked diagnostic kit according to the European in vitro diagnostic directive 98/79/CE.

CLONIT S.r.I. Headquarter: Via Varese 20 – 20121 Milano Production Site: Via Lombardia 6 - 27010 Siziano (PV) - Italy Tel. + 39. (0)2.56814413 fax. +39. (0)2.56814515 www.clonit.it - info@clonit.it

