

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Bovine IgG Assay

Immunoenzymetric Assay for the Measurement of Bovine IgG Catalog # F070

Intended Use

This kit is intended for use in quantitating bovine IgG. The kit is for **Research and Manufacturing Use Only** and is not intended for diagnostic use in humans or animals.

Summary and Explanation

The manufacture of products by various biotechnological processes such as cell or tissue culture can result in residual pollution of the desired product by components used in the culture media. Many formulations of media contain either bovine serum or other more purified fractions of serum proteins such as albumin or transferrin which may contain varying amounts of bovine IgG. When the intended product may be used as a therapeutic agent in humans or animals the product should be highly purified to avoid potential health risks or other problems that might result from trace pollutants. Efforts to reduce trace media pollution to the lowest level practical through optimal process design, gualification, and final product testing require a highly sensitive and reliable analytical method. The Cygnus Technologies Bovine IgG assay is designed to provide a simple to use, precise, and highly sensitive method to detect pollution to less than 250pg/mL. As such, this kit can be used as a tool to aid in optimal purification process development and in routine quality control of in-process streams as well as final product.

Principle of the Procedure

The Bovine IgG assay is a two-site immunoenzymetric assay. Samples containing Bovine IgG are reacted in microtiter strips coated with an affinity purified capture antibody. A second HRP labeled anti-Bovine IgG antibody is reacted, forming a sandwich complex of solid phase antibody-Bovine IgG-HRP labeled antibody. After a wash step removes any unbound reactants, the strips are then reacted with TMB substrate. Followed by the addition of a stop solution changing the color from blue to yellow. The amount of hydrolyzed substrate is read on a microtiter plate reader and will be directly proportional to the concentration of bovine IgG present in the sample. Accurate quantitation is achieved by comparing

the signal of unknowns to bovine IgG standards assayed at the same time.

Reagents & Materials Provided

Component	Product #		
Anti-bovine IgG:HRP	F071		
Sheep antibody (H&L chain specific) conjugated			
to horseradish peroxidase with preservative.			
1x12mL			
Anti-bovine IgG coated microtiter strips	F072*		
12x8 well strips in a bag with desiccant			
Bovine IgG Standards	F073		
Bovine IgG in a protein matrix with preservative.			
Standards at 0, 0.25, 1, 4, and 20ng/mL. 1mL/vial			
Stop Solution	F006		
0.5M sulfuric acid. 1x12mL			
TMB Substrate	F005		
3,3',5,5' Tetramethylbenzidine. 1x12mL			
Wash Concentrate (20X)	F004		
Tris buffered saline with preservative. 1x50mL			

*All components can be purchased separately except # F072.

Storage & Stability

- All reagents should be stored at 2°C to 8°C for stability until the expiration date printed on the kit.
- Reconstituted wash solution is stable until the expiration date of the kit.
- After prolonged storage, you may notice a salt precipitate and/or yellowing of the wash concentrate. These changes will not impact assay performance. To dissolve the precipitate, mix the wash concentrate thoroughly and dilute as directed in the 'Preparation of Reagents' section.

Materials & Equipment Required But Not Provided

- Microtiter plate reader spectrophotometer with dual wavelength capability at 450 & 650nm. (If your plate reader does not provide dual wavelength analysis you may read at just the 450nm wavelength.)
- Pipettors 50µL and 100µL

- Repeating or multichannel pipettor 100µL
- Microtiter plate rotator (400 600 rpm)
- Sample Diluent (recommended Cat # F031A)
- Distilled water
- 1 liter wash bottle for diluted wash solution

Precautions

- For Research or Manufacturing use only.
- Stop reagent is 0.5M H₂SO₄. Avoid contact with eyes, skin, and clothing.
- This kit should only be used by qualified technicians.

Preparation of Reagents

- Bring all reagents to room temperature.
- Dilute wash concentrate to 1 liter in distilled water, label with kit lot and expiration date, and store at 4°C.

Procedural Notes

1. Complete washing of the plates to remove excess unreacted reagents is essential to good assay reproducibility and sensitivity. We advise against the use of automated or other manual operated vacuum aspiration devices for washing plates as these may result in lower specific absorbances, higher non-specific absorbance, and more variable precision. The manual wash procedure described below generally provides lower backgrounds, higher specific absorbance, and better precision. If duplicate CVs are poor or if the absorbance of the "0" standard is greater than 0.2, evaluate plate washing procedure for proper performance.

2. This kit is a very sensitive assay for blgG (less than 150pg/mL). Since bovine serum and other bovine protein products are common reagents in many laboratories and are often used at relatively high concentrations it is very important to use extreme care to avoid pollution of any of the components in this kit with external sources of blgG or other bovine protein products. BlgG pollution will manifest itself as either high assay background, poor precision, or unexpected results.

3. Dilution of samples will be required for samples greater than 20ng/mL. The diluent used should be compatible with accurate recovery. The preferred diluent is our Cat. # F031A available in 100mL, 500mL, or 1 liter bottles. This is the same material used to prepare the kit standards. As the sample is diluted in F031A its matrix begins to approach that of the standards thus reducing any inaccuracies caused by dilutional artifacts. Other

prospective diluents should be qualified in the assay to demonstrate that they do not give elevated background and are not polluted with blgG or other bovine proteins. The diluent should also give acceptable recovery when spiked with known quantities of blgG.

4. High Dose Hook Effect may be observed in samples with very high concentrations of blgG. Samples greater than 2μ g/mL may give absorbances less than the 20ng/mL standard. If a hook effect is possible samples should also be assayed diluted. If the dilution corrected concentration of the diluted sample is greater than the undiluted sample this may be indicative of the hook effect.

Limitations

- The antibodies used in this kit may cross react with bovine IgM. Cross reactivity with other species has not been extensively investigated.
 - Certain sample matrices may interfere in this assay. Although the assay is designed to minimize matrix interference, materials such as detergents in high concentration, extremes of pH (less than 6.0 and greater than 8.5) or very high protein concentrations may give erroneous results. It is recommended to test the sample matrix for interference by diluting the 20ng/mL standard 1 part to 3 parts of the matrix that does not contain any blgG. This diluted standard when assaved as an unknown should give a value of 5ng/mL + 20%. In cases where blgG levels in the sample will allow for sample dilution, such dilution will often overcome sample matrix interference. Consult Cygnus Technologies Technical Service Department for advice on how to quantitate the assay in problematic matrices.

Assay Protocol

- The assay is very robust such that assay variables like incubation times, sample size, and other sequential incubation schemes can be altered to manipulate assay performance for more sensitivity, increased upper analytical range, or reduced sample matrix interference. Before modifvina the protocol from what is recommended, users are advised to contact our technical services for input on the best way to achieve your desired goals.
- The protocols specify use of an approved orbital microtiter plate shaker for the immunological step. These can be purchased from most laboratory supply companies. If you do not have such a device, it is possible to incubate the plate without shaking however it will be necessary to extend the immunological incubation step in the plate by

about 60 minutes in order to achieve comparable results to the shaking protocol. **Do not shake during the 30-minute substrate incubation step as this may result in higher backgrounds and worse precision.**

- Avoid the assay of samples containing Sodium Azide, (NaN₃) which will destroy the HRP activity of the conjugate and could result in the underestimation of blgG levels in that sample.
- Bring all reagents to room temperature.
- Set-up plate spectrophotometer to read dual wavelength at 450nm for the test wavelength, and 650nm for the reference wavelength. Blank the instrument using the zero standard wells after assay completion.
- All standards, controls and samples should be assayed in duplicate. Samples that could contain very high levels of blgG above the 20ng/mL standard or in the "Hook" region of this assay should also be assayed diluted. Recommended diluent is *Cygnus Technologies* Cat # F031A. Avoid the use of diluents which contain NaN₃ or could be polluted with trace levels of blgG or other bovine proteins.
- Thorough washing is essential to proper performance of this assay. Automated plate washing systems or other vacuum aspiration devices are not recommended. The manual method described in the assay protocol is preferred for best precision, sensitivity and accuracy. A more detailed discussion of this procedure can be obtained from our Technical Services Department or on our web site. In addition, a video demonstration of proper plate washing technique is available in the 'Technical Help' section of our web site.
- Maintain a repetitive timing sequence from well to well for all assay steps to ensure that all incubation times are the same for each well.
- Make a work list for each assay to identify the location of each standard control and sample.
- If the substrate has a distinct blue color prior to the assay it may have been contaminated. If this appears to be the case, read 100 μL of substrate plus 100 μL of Stop Solution against a water blank. If the absorbance is greater than 0.1 it may be necessary to obtain new substrate or the sensitivity of the assay may be compromised.
- Plates should be read within 30 min. after adding stop since color will fade over time.

Assay Protocol

1. Pipette $50 \mu L$ of standards, controls and samples into wells indicated on work list.

2. Pipette 100 μL of anti-bovine IgG:HRP (#F071) in each well.

3. Cover & incubate on orbital shaker at 400-600 rpm for 2 hours at room temperature, 24°C <u>+</u> 4°C.

4. Dump contents of wells into waste. Blot and gently but firmly tap over absorbent paper to remove most of the residual liquid. Overly aggressive banging of the plate or use of vacuum aspiration devices in an attempt to remove all residual liquid is not necessary and may cause variable dissociation of antibody bound material resulting in lower ODs and worse precision. Fill wells generously to overflowing with diluted wash solution using a squirt bottle or by pipetting in ~350µL. Dump and tap again. Repeat for a total of 4 washes. Wipe off any liquid from the bottom outside of the microtiter wells as any residue can interfere in the reading step. Do not allow wash solution to remain in wells for longer than a few seconds. Do not allow wells to dry before adding substrate.

5. Pipette 100µL of TMB substrate (#F005).

6. Incubate at room temperature for 30 minutes. DO NOT SHAKE.

- 7. Pipette 100µL of Stop Solution (#F006).
- 8. Read absorbance at 450/650nm.

Calculation of Results

The standards may be used to construct a standard curve with values reported in ng/mL. This data reduction may be performed through computer methods using curve fitting routines such as point-to-point, spline, or 4 parameter logistic fit. **Do not use linear regression analysis to interpolate values for samples as this may lead to significant inaccuracies!** Data may also be manually reduced by plotting the absorbance values of the standard on the y-axis versus concentration on the x-axis and drawing a smooth point-to-point line. Absorbances of samples are then interpolated from this standard curve.

Quality Control

- Precision on duplicate samples should yield average % coefficients of variation of less than 10% for samples greater than 1ng/mL. CVs for samples less than 1ng/mL may be greater than 10%.
- It is recommended that each laboratory assay appropriate quality control samples in each run to ensure that all reagents and procedures are correct.

Example Data

Well #	Contents	Abs. at 450- 650nm	Mean Abs.	
A1	Zero Std	0.000	0.001	
B1	Zero Std	0.002		
C1	0.25ng/mL	0.035	0.033	
D1	0.25ng/mL	0.031		
E1	1ng/mL	0.124	0.124	
F1	1ng/mL	0.123		
G1	4ng/mL	0.467	0.476	
H1	4ng/mL	0.485		
A2	20ng/mL	1.785	1,745	
B2	20ng/mL	1.705	1.745	

Performance Characteristics

Cygnus Technologies has qualified this assay by conventional criteria as indicated below. A more detailed copy of this "Qualification Summary" report can be obtained by request. This qualification is generic in nature and is intended to supplement but not replace certain user and product specific qualification and qualification that should be performed by each laboratory. At a minimum each laboratory is urged to perform a spike and recovery study in their sample types. In addition, any of your samples types containing blgG within or above the analytical range of this assay should be evaluated for dilutional linearity to ensure that the assav is accurate and has sufficient antibody excess for your particular blgG samples. Each laboratory and technician should also demonstrate competency in the assay by performing a precision study similar to that described below. A more detailed discussion of recommended user gualification protocols can be obtained by contacting our Technical Services Department or at our web site.

Sensitivity

The lower limit of detection (LOD) is defined as that concentration corresponding to a signal two standard deviations above the mean of 10 replicates of the zero

standard. LOD is ~100 pg/mL in the recommended protocol. The lower limit of quantitation (LOQ) is defined as the lowest concentration, where concentration coefficients of variation (CVs) are less than 20%. The LOQ is ~150 pg/mL.

Precision

Precision is defined as the percent coefficient of variation (%CV). This is calculated by dividing the standard deviation by the mean value for a number of replicate determinations of two different control samples in the low and high concentration range of the assay. Both intra and inter-assay (n=5 assays) precision were determined on 2 pools with low (~1ng/mL) and high concentrations (~5ng/mL).

Intra-assay In			Inte	er-assay	
# of test s	Mean ng/m L	%C V	# of assays	Mean ng/m L	%CV
20	1.1	7.2	5	1.1	7.8
20	5.2	4.3	5	5.0	6.6

Specificity/Cross-Reactivity

In sandwich ELISA cross reactivity can manifest itself either as a false increase in blgG (positive cross reactivity) or as a false decrease in blgG (negative cross reactivity) when blgG present in the sample competes with the cross reactant for the kit antibodies. Mouse IgG and human IgG1, IgG2a, IgG2b, and IgA were tested at 2 mg/mL and found to have no cross reactivity in this assay. All matrices should be evaluated by the user for the possibility of cross reactivity.

Recovery/ Interference Studies

Various buffer matrices were evaluated by adding known amounts of blgG. Because this assay is designed to minimize matrix interference most of these buffers yielded acceptable recovery defined as between 80-120%. In general, extremes in pH (less than 6.0 and greater than 8.5), high salt concentrations, as well as certain detergents can cause under-recovery. Some product proteins in high concentration may also interfere in the accurate measurement of blgG. Each user should qualify that their sample matrices yield accurate recovery. Such an experiment can be easily performed by diluting the 20ng/mL standard provided with this kit into the sample matrix in question. For example, add 1 part of the 20ng/mL standard to 3 parts of the matrix containing no or very low blgG pollutants. This diluted standard when assayed as an unknown should give a value of 5 +\- 20%. Consult Cygnus Technologies Technical Service Department for advice on how to quantitate the assay in problematic matrices.

Hook Capacity

Increasing concentrations of HCPs greater than 20 ng/mL were assayed as unknowns. The hook capacity, defined as that concentration that can give an absorbance reading less than the 20ng/mL standard, was 2 μ g/mL.

Ordering Information/ Customer Service

Cygnus Technologies also offers kits for the extraction and detection of CHO Host Cell DNA. The following kits are available:

To place an order or to obtain additional product information contact *Cygnus Technologies*:

www.cygnustechnologies.com

Cygnus Technologies, LLC 4332 Southport Supply Rd. SE Southport, NC 28461 USA Tel: 910-454-9442 Fax: 910-454-9443 Email: techsupport@cygnustechnologies.com

