

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

WYE-132

Cat. No.: HY-10044

CAS No.: 1144068-46-1

Molecular Formula: $C_{27}H_{33}N_{7}O_{4}$

Molecular Weight: 519.6

Target: mTOR; Apoptosis

Pathway: PI3K/Akt/mTOR; Apoptosis

Powder -20°C Storage: 3 years

> 4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

HN _O	
HN	
	N N N
	N N
	$\begin{pmatrix} 0 \end{pmatrix}$

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (48.11 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9246 mL	9.6228 mL	19.2456 mL
	5 mM	0.3849 mL	1.9246 mL	3.8491 mL
	10 mM	0.1925 mL	0.9623 mL	1.9246 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (4.81 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description WYE-132 (WYE-125132) is a highly potent, ATP-competitive, and specific mTOR kinase inhibitor (IC50: 0.19±0.07 nM; >5,000-

fold selective versus PI3Ks). WYE-132 (WYE-125132) inhibits mTORC1 and mTORC2.

mTOR mTORC1 mTORC2 ΡΙ3Κα IC₅₀ & Target 0.19 nM (IC₅₀) $1.179 \, \mu M \, (IC_{50})$

ΡΙ3Κδ hSMG1 $2.38 \mu M (IC_{50})$ 1.25 μM (IC₅₀)

In Vitro WYE-132 (WYE-125132) potently inhibits recombinant mTOR via an ATP-competitive mechanism. WYE-132 is a potent antiproliferative agent against a panel of cancer cell lines with IC50 values generally in the nanomolar range. In the typical 3day dose-response studies, WYE-132 exhibits a more profound antiproliferative activity than CCI-779 in MDA361 and other

Page 1 of 3 www.MedChemExpress.com cells, as shown by the sharper inhibition at doses up to 10 μ M. Fluorescence-activated cell sorting (FACS) analysis of inhibitor-treated (1 μ M, 24 hours) MDA468, PC3MM2, U87MG, A549, and HCT116 cells indicates that WYE-132 elicits a more profound increase in G₁-phase and a reduction in S-phase cells than CCI-779. The WYE-132-induced cell death is evident at 10 and 30 nM (6.2% and 13%, respectively) and is dose dependent, reaching 47% at 1 μ M and 59% at 3 μ M^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

A single i.v. administration of 50 mg/kg WYE-132 (WYE-125132) into tumor-bearing mice leads to suppression of P-S6K(T389) and P-AKT(S473) for at least 8 hours in PC3MM2, MDA361, HCT116, and HT29 tumors, whereas the steady-state level of P-AKT(T308) is not significantly reduced, indicating that the antitumor efficacy of WYE-132 under such dosing regimens reflects the suppression of mTOR rather than PI3K. Oral administration of WYE-132 causes dose-dependent tumor growth delay in the PI3K/mTOR- and HER2-hyperactive MDA361 tumors with significant antitumor activity at 5 mg/kg, which correlates with a suppression P-S6 and P-AKT(S473) but not P-AKT(T308). An optimal dose of 50 mg/kg WYE-132 induces a substantial regression of large MDA361 tumors. WYE-132 also causes a potent and substantial tumor growth delay in the PTEN-null U87MG glioma^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

Cell lines of MDA-MB-361, MDA-MB-231, MDA-MB-468, BT549, LNCap, A549, H1975, H157, H460, U87MG, A498, 786-O, HCT116, MG63, Rat1, HEK293, HeLa and PC3MM2 are used. MDA361 cells are treated for 3 d with CCI-779 and WYE-132 (0.1 nM, 1 nM, 10 nM, 1000 nM, 1000 nM 10μ M and 100μ M). Cell growth assays and IC₅₀ determination are performed. For immunoblotting, cultured cells are treated as indicated. Total cell lysates are prepared using NuPAGE lithium dodecyl sulfate sample buffer and immunoblotted with various antibodies^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice^[1]

For mTOR biomarker studies, various tumors (400 mm³) grown s.c. in female nude mice are dosed by a single i.v. or oral injection with vehicle or WYE-125132 formulated in 5% ethanol, 2% Tween 80, and 5% polyethylene glycol-400. Tumor lysates are prepared and immunoblotted. For efficacy studies, nude mice bearing U87MG, MDA361, H1975, A549, A498, or 786-O tumors are staged and randomized into treatment groups (n=10). Mice are dosed orally with vehicle or WYE-125132 following qd x5 cycle regimen (5 d on, 2 d off) for up to four cycles. Temsirolimus/CCI-779 is formulated as WYE-132 and dosed i.v. once weekly. Bevacizumab is formulated in PBS and dosed i.p. via its clinical regimen (200 μg/mouse; once weekly). Tumor growth is monitored and analyzed.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Syst. 2020 Jan 22;10(1):66-81.e11.
- Cell Syst. 2020 Jan 22;10(1):66-81.e11.
- Cell Rep. 2021 Apr 6;35(1):108959.
- Front Pharmacol. 2020 Nov 11;11:580407.
- Molecules. 2020 Apr 23;25(8):1980.

See more customer validations on www.MedChemExpress.com

REFERENCES

1]. Yu K, et al. Beyond rapalog mTORC2.Cancer Res. 2010 Jan	og therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive an an 15;70(2):621-631.	d specific inhibitor of mTORC1 and
	Caution: Product has not been fully validated for medical applications. For research	n use only.
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemEx	press.com
	Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA	

Page 3 of 3 www.MedChemExpress.com