

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

LP-935509

Cat. No.: HY-117626 1454555-29-3 CAS No.: Molecular Formula: $C_{20}H_{24}N_{6}O_{3}$ Molecular Weight: 396.44

Target: AAK1; Cyclin G-associated Kinase (GAK); SARS-CoV

Pathway: Neuronal Signaling; Cell Cycle/DNA Damage; Anti-infection

-20°C Storage: Powder 3 years

In solvent

4°C 2 years -80°C 1 year

-20°C 6 months

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (126.12 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.5224 mL	12.6122 mL	25.2245 mL
	5 mM	0.5045 mL	2.5224 mL	5.0449 mL
	10 mM	0.2522 mL	1.2612 mL	2.5224 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.25 mM); Clear solution

BIOLOGICAL ACTIVITY

Description LP-935509 is an orally active, potent, selective, ATP-competitive and brain-penetrant inhibitor of adaptor protein-2 associated kinase 1 (AAK1) with an IC $_{50}$ of 3.3 nM and a K $_{i}$ of 0.9 nM, respectively. LP-935509 is also a potent inhibitor of BIKE (IC₅₀=14 nM) and a modest inhibitor of GAK (IC₅₀=320 nM). LP-935509 shows antinociceptive activity. LP-935509 can be used for neuropathic pain and SARS-CoV-2 research^[1].

IC₅₀ & Target IC50: 3.3 ± 0.7 nM (AAK1), 14 nM (BIKE), 320 ± 40 nM (GAK)^[1]

In Vitro

LP-935509 inhibits $\mu 2$ phosphorylation with an IC₅₀ value of 2.8 \pm 0.4 nM, inhibits phosphorylation of a peptide derived from the $\mu 2$ protein with an IC₅₀ value of 3.3 \pm 0.7 nM^[1].

?LP-935509 exhibits a dose-dependent inhibition of the SARS-CoV-2 S-RBD internalization into host cells $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

LP-935509 (0-60 mg/kg; PO, single) causes a robust reduction in pain behavior^[1].

?LP-935509 (0.1-30 mg/kg; PO, single dosage) causes a dose-dependent reversal of thermal hyperalgesia in CCI model^[1]. ?LP-935509 (IV (1 mg/kg) or orally (10 mg/kg); once) has 100% oral bioavailability and a plasma half life of 3.6 hours^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male C57BL/6J mice (with SNL(spinal nerve ligation) injury, n=8-10 male mice per group) $^{[1]}$	
Dosage:	0, 10, 30 and 60 mg/kg (10 ml/kg)	
Administration:	PO, single	
Result:	Caused a dose-dependent reduction in phase II paw flinches that was significantly lower than the vehicle-treated animals; exhibited a dose-dependent reversal of the mechanical allodynia; Caused a robust reduction in pain behavior.	

Animal Model:	Male Sprague-Dawley rats (CCI (chronic constriction injury)-operated rats) $^{[1]}$	
Dosage:	0, 0.1, 0.3, 1, 3, 10, or 30 mg/kg	
Administration:	PO, two daily, for 5 days	
Result:	Caused a dose-dependent reversal of thermal hyperalgesia, cold allodynia, mechanical allodynia, and mechanical hyperalgesia in CCI animals. Reversed the behavioral deficits, with ${\rm ED}_{50}$ values ranging from 2 mg/kg to 10 mg/kg.	

Animal Model:	Male Sprague-Dawley rats ^[1]
Dosage:	1 mg/kg (IV), 10 mg/kg (PO)
Administration:	IV, PO; once (Pharmacokinetic Analysis)
Result:	Had 100% oral bioavailability and a plasma half life of 3.6 hours; The Cmax for the 10 mg/kg oral dose was 5.2 μ M at 0.5-hour postdose; had a plasma-free fraction of 2.6% in mice. Brain drug levels exceeded plasma drug levels with a brain/plasma drug ratio typically between 3 and 4, showing that LP-935509 was highly brain-penetrant.

REFERENCES

[1]. Mushtaq, et al. Role Of Endocytic Machinery Regulators in EGFR Traffic and Viral Entry (2021). Theses & Dissertations. 532.

[2]. Kostich W, et al. Inhibition of AAK1 Kinase as a Novel Therapeutic Approach to Treat Neuropathic Pain. J Pharmacol Exp Ther. 2016 Sep;358(3):371-86.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA