

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Proteins

Screening Libraries

Product Data Sheet

LHVS

Cat. No.: HY-128971 CAS No.: 170111-28-1 Molecular Formula: $C_{28}H_{37}N_3O_5S$ Molecular Weight: 527.68

Target: Cathepsin; Parasite

Pathway: Metabolic Enzyme/Protease; Anti-infection

Storage: Powder -20°C 3 years

> 4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (189.51 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8951 mL	9.4754 mL	18.9509 mL
	5 mM	0.3790 mL	1.8951 mL	3.7902 mL
	10 mM	0.1895 mL	0.9475 mL	1.8951 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.74 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (4.74 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.74 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	LHVS is a potent, non-selective, irreversible, cell-permeable cysteine protease and cathepsin inhibitor. LHVS decreases actin ring formation. LHVS inhibits T. gondii invasion with an IC ₅₀ of 10 μ M ^{[1][2][3]} .				
IC ₅₀ & Target	cathepsin S	cathepsin K	cathepsin L	Cathepsin B	
In Vitro	LHVS (5 μ M, 2 h) results in a 50% reduction of actin ring formation in wild-type osteoclasts when compared with untreated osteoclasts ^[1] .				

LHVS acts in a dose-dependent manner on osteoclasts and at 5 μ M, LHVS inhibits cathepsins K, L, S, and B^[1]. LHVS (1-5 nM) can inhibit specifically cathepsin S in HOM2 cells, leaving other cysteine proteases functionally active^[3].

LHVS impairs tachyzoite attachment by blocking the release of at least two key invasion proteins, MIC2 and M2AP, from the micronemes^[2].

LHVS (50 μM) selectively impairs microneme protein secretion^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

LHVS (3-30 mg/kg, SC, once) shows anti-hyperalgesic effect in neuropathic rats^[4].

LHVS (30 nmol per rat, spinal delivery, daily) is antinociceptive in neuropathic rats^[5].

LHVS (1-50 nmol per rat, Intrathecal injection, daily) reverses established neuropathic mechanical hyperalgesia in 14-day neuropathic rats^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Wistar rats (180-220 g) ^[4]		
Dosage:	3-30 mg/kg		
Administration:	SC, once		
Result:	Produced a dose-dependent reversal of the mechanical hyperalgesia which lasted up to him neuropathic rats. In contrast, a single systemic administration of LHVS did not reverse mechanical allodynia in neuropathic rats.		
Animal Model:	Male Wistar rats received a partial ligation of the left sciatic nerve (PNL) ^[5]		
Dosage:	30 nmol per rat		
Administration:	Spinal delivery, Daily		
Result:	Failed to prevent the development of allodynia when continuous delivery from day 0 to day 7 post-PNL, but significantly reversed allodynia on day 7 post-PNL. In addition, the delivery of LHVS from day 7 to day 14 post-PNL significantly reversed established mechanical allodynia from day 8.		
Animal Model:	Male Wistar rats received a partial ligation of the left sciatic nerve (PNL) ^[5]		
Dosage:	1, 10 or 50 nmol per rat		
Administration:	Intrathecal injection, Daily		
Result:	Reduced established mechanical hyperalgesia. This effect was dose-dependent and remained significant until 3 h after administration of the highest dose.		

REFERENCES

- [1]. Riese RJ, et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996 Apr;4(4):357-66.
- [2]. Barclay J, et al. Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain. 2007 Aug;130(3):225-234.
- [3]. Clark AK, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10655-60.
- [4]. Wilson SR, et al. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J Biol Chem. 2009 Jan 23;284(4):2584-92.

5]. Teo CF, et al.Cysteine prote	ase inhibitors block Toxoplasm	na gondii microneme secretio	n and cell invasion. Antimicrob Agents Chemo	ther. 2007 Feb;51(2):679-88.
			edical applications. For research use only	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.com	n
	Address. 1 De	eer Park Dr, Suite Q, Moriiii	outh Junction, NJ 08852, USA	

Page 3 of 3 www.MedChemExpress.com