

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

TGR5 Receptor Agonist

Cat. No.: HY-14229

CAS No.: 1197300-24-5 Molecular Formula: $C_{18}H_{14}Cl_{2}N_{2}O_{2}$

Molecular Weight: 361.22

G protein-coupled Bile Acid Receptor 1; Calcium Channel Target:

Pathway: GPCR/G Protein; Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

 $4^{\circ}C$ 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

DMSO : ≥ 48 mg/mL (132.88 mM) In Vitro

* "≥" means soluble, but saturation unknown.

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.7684 mL	13.8420 mL	27.6840 mL
	5 mM	0.5537 mL	2.7684 mL	5.5368 mL
	10 mM	0.2768 mL	1.3842 mL	2.7684 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 10 mg/mL (27.68 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 10 mg/mL (27.68 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	TGR5 Receptor Agonist (CCDC), a potent Takeda G protein-coupled receptor 5 (TGR5; GPCR19) agonist, shows improved potency in the U2-OS cells and melanophore cells with pEC $_{50}$ s of 6.8 and 7.5, respectively. TGR5 Receptor Agonist can induce peripheral and central hypersensitivity to bladder distension in mice, and increase intracellular Ca $^{2+}$ concentration. TGR5 Receptor Agonist can also reduces food intake and improves insulin responsiveness, in diet-induced obese mice. TGR5 Receptor Agonist can be used to research diabetes, bladder hypersensitivity and anti-obesity [1][2][3][4].
IC % Target	TCPE[1]

IC₅₀ & Target TGR5^{[1}

In Vivo TGR5 Receptor Agonist (CCDC) activates directly a sub-population of bladder-innervating dorsal root ganglia (DRG) neurons

Animal Model:	Female C57BL/6J mice [12-18 weeks; TRPV1 knockout (trpv1 $^{-/-}$), TRPA1 knockout (trpa1 $^{-/-}$) or TGR5 knockout (Gpbar1 $^{-/-}$)] ^[2]	
Dosage:	100 μΜ, 100 μL	
Administration:	Infused gently, to fill but not fully distend the bladder, and allowed to incubate for 5 min	
Result:	Activated directly a sub-population of bladder-innervating dorsal root ganglia (DRG) neurons in Trpv1 ^{-/-} mice, also activated a small percentage of non-neuronal cells. Increased intracellular Ca ²⁺ in bladder-innervating DRG neurons. Increased intracellular Ca ²⁺ in a small proportion of non-neuronal cells.	
Animal Model:	Male C57BL/6J mice (obese induced by high-fat diet) ^[3]	
Dosage:	2 or 5 μg at a volume of 0.2 μL per brain side and a rate of 0.6 $\mu L/min$	
Administration:	ICV (acute intra-hypothalamic experiment)	
Result:	Significantly reduced food intake over time, with a robust reduction in 24 h food intake and body weight gain.	
Animal Model:	Male C57BL/6J mice (obese induced by high-fat diet; implanted with micro-osmotic pumps that were filled with CCDC) $^{[3]}$	
Dosage:	5 μg/day; 91.9 μL, pumping rate of 0.09 μL/h	
Administration:	ICV; for 4 weeks (chronic experiment)	
Result:	Reduced food intake and improved insulin responsiveness. Increased energy expenditure during the dark phase. Increased mRNA expression of β1, 2, and 3 adrenoreceptors (Adrb1, Adrb2, and Adrb3) in the epidydimal white adipose tissue, and increased Dio2 (the gene expressing the enzyme D2) in brown adipose tissue.	

CUSTOMER VALIDATION

• Nat Commun. 2023 Jun 30;14(1):3863.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Caldwell A, Grundy L, Harrington AM, Garcia-Caraballo S, Castro J, Bunnett NW, Brierley SM. TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Sci Rep. 2022 Jun 15;12(1):9920.
- [2]. Castellanos-Jankiewicz~A,~et~al.~Hypothalamic~bile~acid-TGR5~signaling~protects~from~obesity.~Cell~Metab.~2021~Jul~6;33(7):1483-1492.e10.

and a small percentage of non-neuronal cells in $Trpv1^{-/-}$ mice^[2].

Page 2 of 3 www.MedChemExpress.com

3-aryl-4-isoxazolecarboxa	arrildes as TGR5 receptor agoriists.	J Med Chem. 2009 Dec 24;52(24):7962-5.	
		edical applications. For research use only.	
Tel: 609-228-6898 Address	Fax: 609-228-5909 : 1 Deer Park Dr, Suite Q, Monmo	E-mail: tech@MedChemExpress.com outh Junction, NJ 08852, USA	

Page 3 of 3 www.MedChemExpress.com