

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

CP-640186 hydrochloride

MedChemExpress

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-15259A 591778-70-0 C ₃₀ H ₃₆ ClN ₃ O ₃ 522.08 Acetyl-CoA Carboxylase Metabolic Enzyme/Protease 4°C, sealed storage, away from moisture	
Storage.	* In solvent : -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

In Vitro	DMSO : ≥ 48 mg/mL (9	H ₂ O : 50 mg/mL (95.77 mM; Need ultrasonic) DMSO : ≥ 48 mg/mL (91.94 mM) * "≥" means soluble, but saturation unknown.				
		Solvent Mass Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	1.9154 mL	9.5771 mL	19.1542 mL	
		5 mM	0.3831 mL	1.9154 mL	3.8308 mL	
		10 mM	0.1915 mL	0.9577 mL	1.9154 mL	
	Please refer to the sol	ubility information to select the app	propriate solvent.			
In Vivo		1. Add each solvent one by one: PBS Solubility: 100 mg/mL (191.54 mM); Clear solution; Need ultrasonic				
		2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution				
		3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution				
		4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.79 mM); Clear solution				

BIOLOGICAL ACTIVITY

Description

CP-640186 hydrochloride is an orally active and cell-permeable Acetyl-CoA carboxylase (ACC) inhibitor with IC₅₀s of 53 nM and 61 nM for rat liver ACC1 and rat skeletal muscle ACC2 respectively. Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism that enables the synthesis of malonyl-CoA. CP-640186 hydrochloride can also stimulate muscle fatty acid oxidation^{[1][2]}.

IC _{E0}	&	Та	rget	
50	~			

IC50: 53 nM (rat liver ACC1) and 61 nM (rat skeletal muscle ACC2)^[1]

In Vitro

CP-640186 (20 $\mu\text{M};$ 48 h) treatment can inhibit H460 cell growth $^{[3]}.$

CP-640186 (0.1 nM-100 μM; 2 h) treatment increases fatty acid metabolism in a concentration-dependent manner in C2C12 cells and muscle strips^[1].

CP-640186 (0.62-1.8 µM; 2 h) treatment inhibits fatty acid synthesis and TG synthesis in HepG2 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[3]

Cell Line:	Human fibroblasts and H460 cells
Concentration:	20 μΜ
Incubation Time:	48 hours
Result:	Led to a 🛛 30% decrease in cell number compared to vehicle-treated controls.

Cell Viability Assay^[1]

Cell Line:	C2C12 cells and muscle strips
Concentration:	0.1 nM-100 μM
Incubation Time:	2 hours
Result:	Stimulated palmitate acid oxidation with an EC ₅₀ of 57 nM and a maximal stimulation of 280% in C2C12 cells. Stimulated palmitate acid oxidation with an EC ₅₀ of 1.3 μM and a maximal stimulation of 240% in isolated rat epitrochlearis muscle.

Cell Viability Assay^[1]

Cell Line:	HepG2 cells
Concentration:	0.62-1.8 μM
Incubation Time:	6 hours
Result:	Inhibited fatty acid synthesis and TG synthesis in HepG2 cells with $EC_{50}s$ of 0.62 μM and 1.8 μM , respecticely.

In Vivo

CP-640186 (oral gavage; 4.6-21 mg/kg; once) demonstrates acute efficacy^[1].

CP-640186 (intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once) shows lowe drug exposure in the rat than the ob/ob mouse at equal doses^[1].

CP-640186 (oral gavage; 100 mg/kg; once) treatment shows a complete shift from carbohydrate utilization to fatty acid utilization as a source of energy at high exposure level^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male ob/ob mice ^[1]
Dosage:	4.6-21 mg/kg
Administration:	Oral gavage; 4.6-21 mg/kg; once
Result:	Demonstrated acute efficacy for up to 8 h after oral administration, exhibiting ED ₅₀ values of 4.6, 9.7, and 21 mg/kg, at 1, 4, and 8 h, respectively, after treatment.

Animal Model:	Male Sprague-Dawley rats ^[1]
Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg
Administration:	Intravenous injection and oral gavage; intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once
Result:	Showed a plasma half-life of 1.5 h, a bioavailability of 39%, a Cl _p of 65 ml/min/kg, a V _{dss} of 5 liters/kg, an oral T _{max} of 1.0 h, an oral C _{max} of 345 ng/mL, and an oral AUC _{0-∞} of 960 ng•h/mL.
Animal Model:	Male ob/ob mice $^{[1]}$
Dosage:	Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg
Administration:	Intravenous injection and oral gavage; Intravenous dose, 5 mg/kg; oral dose, 10 mg/kg; once
Result:	Showed a plasma half-life of 1.1 h, a bioavailability of 50%, a Cl _p of 54 ml/min/kg, an oral T _{max} of 0.25 h, an oral C _{max} of 2177 ng/mL, and an oral AUC _{0-∞} of 3068 ng•h/mL.
Animal Model:	Twenty male Sprague-Dawley rats (350-400 g) fasted and then refed a high sucrose diet fo 2 days; additional eight rats fasted for 24 h ^[1]
Dosage:	100 mg/kg
Administration:	Oral gavage; 100 mg/kg; once
Result:	Resulted in time-dependent reductions in RQ (a ratio of CO_2 production to O_2 consumption) of up to 64%.

CUSTOMER VALIDATION

- J Exp Med. 2021 Dec 6;218(12):e20210639.
- Nutrients. 2021 May 21;13(6):1740.
- Front Oncol. 2021 Apr 22;11:665763.
- Front Oncol. 2021 Apr 6.
- Viruses. 2019 Dec 10;11(12):1145.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Daniel Hess, et al. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010 Jun 30;5(6):e11394.

[2]. Harwood HJ Jr, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experiment

[3]. Yamashita T, et al. Design, synthesis, and structure-activity relationships of spirolactones bearing 2-ureidobenzothiophene as acetyl-CoA carboxylases inhibitors. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6314-8.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA