

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Higenamine

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway:	HY-N2037 5843-65-2 C ₁₆ H ₁₇ NO ₃ 271.31 Adrenergic Receptor; Apoptosis; MAP3K; MDM-2/p53; ROS Kinase GPCR/G Protein; Neuronal Signaling; Apoptosis; MAPK/ERK Pathway; Protein	HO NH HO
Storage:	Tyrosine Kinase/RTK 4°C, sealed storage, away from moisture	Но
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

In Vitro	DMSO : ≥ 100 mg/mL (368.58 mM) * "≥" means soluble, but saturation unknown.				
	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
		1 mM	3.6858 mL	18.4291 mL	36.8582 mL
		5 mM	0.7372 mL	3.6858 mL	7.3716 mL
		10 mM	0.3686 mL	1.8429 mL	3.6858 mL
	Please refer to the so	lubility information to select the ap	propriate solvent.		
In Vivo	1. Add each solvent o Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 40% PE g/mL (9.21 mM); Clear solution	G300 >> 5% Tween-80) >> 45% saline	
	2. Add each solvent o Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 90% (20 g/mL (9.21 mM); Clear solution	% SBE-β-CD in saline)		

BIOLOGICAL ACTIVITY

Description	Higenamine (Norcoclaurine), a β2-AR agonist with antioxidant capability, is a key component of the Chinese herb aconite root that prescribes for treating symptoms of heart failure in the oriental Asian countries. Higenamine is also a α1-adrenergic receptor antagonist with hypotensive effect. is a selective LSD1 inhibitor (IC ₅₀ =1.47 μM) that can be isolated from aconite. Higenamine hydrochloride has anti-inflammatory and antibacterial activity. Higenamine protects myocyte Apoptosis and ischemia/reperfusion (I/R) injury through selective activation of beta2-adrenergic receptor (β2-AR). Higenamine also reduces I/R-induced myocardial infarction in mice. Higenamine can attenuate IL-1β-induced Apoptosis through ROS-mediated PI3K/Akt signaling pathway. Higenamine protects brain cells from oxygen deprivation. Higenamine can promote bone formation in osteoporosis through the SMAD2/3 pathway. Higenamine can be used to study cancer, inflammation,
	cardiorenal syndrome and other diseases ^{[1][2][3][4][5][6][7][8][9][10][11]} .

Product Data Sheet

IC₅₀ & Target

In Vitro

 β adrenergic receptor

Higenamine (3-100 μ M; 72 h) can inhibit the differentiation of MV4-11 and MOLM-13 cells by inhibiting the activity of LSD1^[1]. Higenamine (1-100 μ M; 8 h) can enhance the activity of HO-1 in C6 cells and protect brain cells from cell hypoxia damage ^[2]. Higenamine (10-50 μ M; 8 h) can inhibit apoptosis in C6 cells^[2].

Higenamine (10-40 μ M; 24 h) can inhibit the production of IL-1 β -induced ROS and activate the ROS-mediated PI3K/Akt signaling pathway, which has anti-apoptotic activity in HNPCs^[3].

Higenamine (0.08-250 μ M; 0.5-24 h) promotes phosphorylation of SMAD2/3 in a time- and dose-dependent manner in BMSCs ^[6].

Higenamine (0-120 μ M, 24 h) reverses H₂O₂ (250 μ M, 24 h) induced cell death and apoptosis in neonatal rat ventricular myocytes (NRVMs)^[7].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	MV4-11, MOLM-13
Concentration:	3 μΜ, 10 μΜ, 30 μΜ, 100 μΜ
Incubation Time:	72 h
Result:	Could up-regulate the expression levels of LSD1 substrate H3K4me1 and H3K4me2 in a dose-dependent manner, but did not affect the expression levels of H3K4me3, H3 and LSD1. Promoted P53 expression in a dose-dependent manner.

Western Blot Analysis^[2]

Cell Line:	C6
Concentration:	1 μΜ, 5μΜ, 10 μΜ, 50 μΜ,100 μΜ
Incubation Time:	8 h
Result:	Increased HO-1 expression in a concentration-dependent manner under hypoxia and normoxia conditions.

Real Time qPCR^[1]

Cell Line:	MV4-11, MOLM-13
Concentration:	3 μΜ, 10 μΜ, 30 μΜ, 100 μΜ
Incubation Time:	72 h
Result:	Significantly down-regulated the expression levels of HoxA9 and Meis1 in leukemia cells in a dose-dependent manner.

Apoptosis Analysis^[7]

Cell Line:	NRVMs
Concentration:	0-120 μΜ
Incubation Time:	24 h
Result:	Dose dependently attenuated H2O2-stimulated early and late apoptosis of NRVMs.

In Vivo

Higenamine hydrochloride (10 mg/kg; Intraperitoneal injection; Single dose) can significantly reduce the inflammation and

hemic injury caused by middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats ¹²¹ .
e (0.5-4.5 mg/kg; Single dose) improves cardiac and renal function in rats with cardio-renal
iates cardiac and renal fibrosis by targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway in
e (20 mg/kg-30 mg/kg; Intraperitoneal injection; Once daily for 60 days) promotes bone formation
Done loss in SAMP6 inice ^{v_3} .
n, 2 in prior to the surgery) protects against i/k-induced myocardial infarction in mice bearing
ly confirmed the accuracy of these methods. They are for reference only.
Spontaneous osteoporosis SAMP6 mice model ^[6]
10 mg/kg, 20 mg/kg
Intraperitoneal injection (i.p.);Once daily for 60 days
Significantly increased the expression of P1NP and OCN (P1NP and OCN are markers of bone formation).
Mice bearing ischemia/reperfusion injury ^[7]
10 mg/kg
i.p., 2 h prior to the surgery
Decreased the myocardial infarct areas (MI) and increased myocyte survival in mice bearing ischemia/reperfusion injury.

CUSTOMER VALIDATION

- Nutrients. 2024 May 22.
- J Inflamm Res. 2024 Oct 14:17:7295-7310.
- J Pharmaceut Biomed. 2020, 113870.

See more customer validations on <u>www.MedChemExpress.com</u>

REFERENCES

[1]. Wen J, et al. Role of Higenamine in Heart Diseases: A Mini-Review. Front Pharmacol. 2022 Jan 10;12:798495.

[2]. Chen DT, et al. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol. 2022 Sep 15;13:981048.

[3]. Romeo I, et al. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants (Basel). 2020 Apr 25;9(5):358.

[4]. Fang Y, et al. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg Chem. 2021 Apr;109:104723.

[5]. Ha YM, et al. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis. 2012 May;17(5):463-74.

[6]. Zhu X, et al. Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem. 2021 Nov;476(11):3889-3897. [7]. Deng T, et al. Higenamine Improves Cardiac and Renal Fibrosis in Rats With Cardiorenal Syndrome via ASK1 Signaling Pathway. J Cardiovasc Pharmacol. 2020 Jun;75(6):535-544.

[8]. Erasto, Paul et al. Evaluation of Antimycobacterial Activity of Higenamine Using Galleria mellonella as an In Vivo Infection Model. Natural products and bioprospecting vol. 8,1 (2018): 63-69.

[9]. Dong, Hui et al. Higenamine Promotes Osteogenesis Via IQGAP1/SMAD4 Signaling Pathway and Prevents Age- and Estrogen-Dependent Bone Loss in Mice. Journal of bone and mineral research vol. 38,5 (2023): 775-791.

[10]. Wu MP, et al. Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of β2-AR/PI3K/AKT signaling pathway. Pharmacol Res. 2016 Feb;104:115-23.

[11]. Lee SR, et al. Acute oral intake of a higenamine-based dietary supplement increases circulating free fatty acidsand energy expenditure in human subjects. Lipids Health Dis. 2013 Oct 21;12:148.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA