

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

HEB (h): 293T Lysate: sc-116193

The Power to Question

BACKGROUND

Differentiation of myogenic cells is regulated by multiple positively and negatively acting factors. One well characterized family of helix-loop-helix (HLH) proteins known to play an important role in the regulation of muscle cell development includes Myo D, myogenin, Myf-5 and Myf-6 (also designated MRF-4 or herculin). Myo D transcription factors form heterodimers with products of a more widely expressed family of bHLH genes, the E family, which consists of at least three distinct genes: E2A, IF2 and HEB. Myo D-E heterodimers bind avidly to consensus (CANNTG) E box target sites that are functionally important elements in the upstream regulatory sequences of many muscle-specific terminal differentiation genes. Both homo- and hetero-oligomers of these proteins are able to distinguish very closely related E box proteins and are believed to play important roles in lineage specific gene expression.

REFERENCES

- Braun, T., et al. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 701-709.
- 2. Murre, C., et al. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537-544.
- 3. Rhodes, S.J., et al. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3: 2050-2061.
- 4. Wright, W.E., et al. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56: 607-617.
- Miner, J.H., et al. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87: 1089-1093.
- Anthony-Cahill, S.J., et al. 1992. Molecular characterization of helix-loophelix peptides. Science 255: 979-983.
- Hu, J., et al. 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol. 12: 1031-1042.
- Aronheim, A., et al. 1993. Cell-specific expression of helix-loop-helix transcription factors encoded by the E2A gene. Nucleic Acids Res. 21: 1601-1606.

CHROMOSOMAL LOCATION

Genetic locus: TCF12 (human) mapping to 15q21.3.

PRODUCT

HEB (h): 293T Lysate represents a lysate of human HEB transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

APPLICATIONS

HEB (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive HEB antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com