

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

SANTA CRUZ BIOTECHNOLOGY, INC.

MAGE-H1 (h): 293T Lysate: sc-159163

The Power to Question

BACKGROUND

The melanoma-associated antigen (MAGE) family consists of a number of antigens recognized by cytotoxic T lymphocytes. The MAGE genes were initially isolated from different kinds of tumors and, based on their virtually exclusive tumor-specific expression in adult tissues, they have been used as targets for cancer immunotherapy. MAGE genes encode for tumor-rejection antigens that are expressed in tumors of different histologic types and in normal testis and placenta. MAGE-H1 (melanoma-associated antigen H1), also known as restin or APR1 (apoptosis-related protein 1), is a 219 amino acid protein that contains a type II MAGE homology domain (MHD). Enhanced ligand stimulation promotes MAGE-H1 interaction with the type II death domain of NGFR p75. It is suggested that MAGE-H1 accelerates differentiation in response to nerve growth factor in cells.

REFERENCES

- De Plaen, E., et al. 1994. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40: 360-369.
- Lucas, S., et al. 1999. A new MAGE gene with ubiquitous expression does not code for known MAGE antigens recognized by T cells. Cancer Res. 59: 4100-4103.
- Serrano, A., et al. 1999. Quantitative evaluation of the expression of MAGE genes in tumors by limiting dilution of cDNA libraries. Int. J. Cancer 83: 664-669.
- Kobayashi, Y., et al. 2000. Expression of MAGE, GAGE and BAGE genes in human liver diseases: utility as molecular markers for hepatocellular carcinoma. J. Hepatol. 32: 612-617.
- Tcherpakov, M., et al. 2002. The p75 neurotrophin receptor interacts with multiple MAGE proteins. J. Biol. Chem. 277: 49101-49104.
- Barker, P.A. and Salehi, A. 2002. The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J. Neurosci. Res. 67: 705-712.
- 7. Shao, J.B. and Chen, Z. 2003. Expression of MAGE, GAGE, and BAGE genes in human hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi 11: 142-144.
- 8. Albrecht, D.E. and Froehner, S.C. 2004. DAMAGE, a novel α -dystrobrevinassociated MAGE protein in dystrophin complexes. J. Biol. Chem. 279: 7014-7023.

CHROMOSOMAL LOCATION

Genetic locus: MAGEH1 (human) mapping to Xp11.21.

PRODUCT

MAGE-H1 (h): 293T Lysate represents a lysate of human MAGE-H1 transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

APPLICATIONS

MAGE-H1 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive MAGE-H1 antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**