Produktinformation Forschungsprodukte & Biochemikalien Zellkultur & Verbrauchsmaterial Diagnostik & molekulare Diagnostik Laborgeräte & Service Weitere Information auf den folgenden Seiten! See the following pages for more information! # Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen # Zuschläge - Mindermengenzuschlag - Trockeneiszuschlag - Gefahrgutzuschlag - Expressversand # SZABO-SCANDIC HandelsgmbH Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 mail@szabo-scandic.com www.szabo-scandic.com linkedin.com/company/szaboscandic in # Chromium(III) acetate hydroxide sc-268708 The Power to Quantie Hazard Alert Code Key: EXTREME HIGH MODERATE LOW # Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION # **PRODUCT NAME** Chromium(III) acetate hydroxide # STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. # FLAMIN BILITY HEALTH AZARD INSTABILITY # **SUPPLIER** Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY #### Charal Matala ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 # **SYNONYMS** C14-H23-Cr3-O16, (CH3CO2)7Cr3(OH)2, "chromic acetate (III), basic", "chromium acetate, basic", "acetic acid, chromium salt, basic" # **Section 2 - HAZARDS IDENTIFICATION** # **CHEMWATCH HAZARD RATINGS** | | | Min | Max | |--------------|---|-----|---------------------| | Flammability | 1 | | | | Toxicity | 2 | | | | Body Contact | 2 | | Min/Nil=0
Low=1 | | Reactivity | 1 | | Moderate=2 | | Chronic | 2 | | High=3
Extreme=4 | | | | | | # **CANADIAN WHMIS SYMBOLS** # EMERGENCY OVERVIEW RISK Harmful by inhalation, in contact with skin and if swallowed. Irritating to eyes, respiratory system and skin. Harmful to aquatic organisms. # **POTENTIAL HEALTH EFFECTS** # **ACUTE HEALTH EFFECTS** #### **SWALLOWED** ■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. #### EYE ■ This material can cause eye irritation and damage in some persons. #### SKIN - Skin contact with the material may be harmful; systemic effects may result following absorption. - This material can cause inflammation of the skin oncontact in some persons. - The material may accentuate any pre-existing dermatitis condition. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. # **CHRONIC HEALTH EFFECTS** ■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chromium (III) is an essential trace mineral. Chronic exposure to chromium (III) irritates the airways, malnourishes the liver and kidneys, causes fluid in the lungs, and adverse effects on white blood cells, and also increases the risk of developing lung cancer. Chromium (VI) can irritate the skin, eyes and airways. Allergic reactions can involve both the skin and airways, and the compounds can diminish taste and smell, discolor the skin and eyes, cause blood disorders and damage the liver, kidneys, digestive tract and lungs. It predisposes humans to cancers of the respiratory tract and digestive system. Ulceration to the skin can occur, and, chromium (VI) is one of the most allergenic substances known. | Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS | | | | | | |--|------------|-----|--|--|--| | NAME | CAS RN | % | | | | | Chromium(III) acetate hydroxide | 39430-51-8 | >98 | | | | # **Section 4 - FIRST AID MEASURES** # **SWALLOWED** - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. - For advice, contact a Poisons Information Centre or a doctor. - Urgent hospital treatment is likely to be needed. - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist. - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE Wear a protective glove when inducing vomiting by mechanical means. #### FYF If this product comes in contact with the eyes - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### SKIN If skin contact occurs - Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. #### **INHALED** - If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay. #### **NOTES TO PHYSICIAN** ■ for poisons (where specific treatment regime is absent) #### ----- # BASIC TREATMENT _____ - Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 L/min. - Monitor and treat, where necessary, for pulmonary oedema. - Monitor and treat, where necessary, for shock. - Anticipate seizures . - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. # ADVANCED TREATMENT ----- - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE 2nd Ed. 1994. Treat symptomatically. | | Section 5 - FIRE FIGHTING MEASURES | |----------------------------|------------------------------------| | Vapor Pressure (mmHG) | Not available | | Upper Explosive Limit (%) | Not available | | Specific Gravity (water=1) | Not available | | Lower Explosive Limit (%) | Not available | # **EXTINGUISHING MEDIA** Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### FIRE FIGHTING - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. #### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - In the same way as gases and vapors, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL). are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC) - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-meter/sec - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapors). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include carbon monoxide (CO), carbon dioxide (CO2), metal oxides, other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. # FIRE INCOMPATIBILITY Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result # **Section 6 - ACCIDENTAL RELEASE MEASURES** # MINOR SPILLS - Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - Control personal contact by using protective equipment. - Use dry clean up procedures and avoid generating dust. - Place in a suitable, labelled container for waste disposal. # **MAJOR SPILLS** Moderate hazard. - CAUTION Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services. # Section 7 - HANDLING AND STORAGE # PROCEDURE FOR HANDLING - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorization or permit. # **RECOMMENDED STORAGE METHODS** - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. # STORAGE REQUIREMENTS - Store in original containers. - · Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. # Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION # **EXPOSURE CONTROLS** | Source | Material | TWA ppm | TWA
mg/m³ | STEL ppm | STEL
mg/m³ | Peak
ppm | Peak
mg/m³ | TWA
F/CC | Notes | |--|--|---------|--------------|----------|---------------|-------------|---------------|-------------|-------| | Canada - Northwest
Territories Occupational
Exposure Limits
(English) | chromic acetate, basic
(Chromium, Sol.
chromic, chromous
salts (as Cr)) | | 0.5 | | 0.15 | | | | | | Canada - Northwest
Territories Occupational
Exposure Limits
(English) | chromic acetate, basic
(Chromite ore
processing (chromate
(as Cr))) | | 0.05 | | 0.15 | | | | | # PERSONAL PROTECTION # **RESPIRATOR** Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent) #### FYF - Safety glasses with side shields. - · Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # HANDS/FEET Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene - nitrile rubber - butyl rubber - fluorocaoutchouc - polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. # **OTHER** - Overalls. - P.V.C. apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. # **ENGINEERING CONTROLS** ■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of - (a) particle dust respirators, if necessary, combined with an absorption cartridge; - (b) filter respirators with absorption cartridge or canister of the right type; (c) fresh-air hoods or masks Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. | | inestriction and required to enticiently remove the contaminant. | | |---|--|---------------------------------| | | Type of Contaminant | Air Speed | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | | 1 | Within each range the appropriate value depends on | | | | Lower end of the range | Upper end of the range | | | 1 Room air currents minimal or favorable to capture | 1 Disturbing room air currents | | | 2 Contaminants of low toxicity or of nuisance value only | 2 Contaminants of high toxicity | | | 3 Intermittent, low production. | 3 High production, heavy use | 3 Intermittent, low production. 4 Large hood or large air mass in motion 4 Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air # Section 9 - PHYSICAL AND CHEMICAL PROPERTIES # **PHYSICAL PROPERTIES** Solid. Mixes with water. | State | Divided solid | Molecular Weight | 603.31 | |---------------------------|---------------|--------------------------------|----------------| | Melting Range (°F) | Not available | Viscosity | Not Applicable | | Boiling Range (°F) | Not available | Solubility in water (g/L) | Miscible | | Flash Point (°F) | None | pH (1% solution) | Not applicable | | Decomposition Temp (°F) | Not available | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available | Vapor Pressure (mmHG) | Not available | | Upper Explosive Limit (%) | Not available | Specific Gravity (water=1) | Not available | | Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not Applicable | | Volatile Component (%vol) | Not available | Evaporation Rate | Not Applicable | ### **APPEARANCE** Powder; mixes with water. The normal product of commerce also contains sodium acetate or sodium sulfate as impurities. # Section 10 - CHEMICAL STABILITY # **CONDITIONS CONTRIBUTING TO INSTABILITY** - Presence of incompatible materials. - Product is considered stable. - Hazardous polymerization will not occur. # STORAGE INCOMPATIBILITY Avoid reaction with oxidizing agents For incompatible materials - refer to Section 7 - Handling and Storage. # **Section 11 - TOXICOLOGICAL INFORMATION** chromic acetate, basic # TOXICITY AND IRRITATION CHROMIC ACETATE. BASIC - unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances. - Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dysonea, cough and mucus production. On skin and inhalation exposure, chromium and its compounds (except hexavalent) can be a potent sensitizer, as particulates. Studies show that they have a complex toxicity mechanism with hexavalent chromium associated with an increased risk of lung damage and respiratory cancers (primarily bronchogenic and nose cancers). However, there is no evidence that elemental, divalent, or trivalent chromium compounds causes cancer or genetic toxicity. No significant acute toxicological data identified in literature search. #### **CARCINOGEN** | CHROMIUM | US Environmental Defense Scorecard Suspected | Reference(s) HAZMAP,
P65-MC | |-----------|--|--------------------------------| | COMPOUNDS | Carcinogens | P65-MC | #### Section 12 - ECOLOGICAL INFORMATION Harmful to aquatic organisms. # **Ecotoxicity** | Ingredient | Persistence:
Water/Soil | Persistence: Air | Bioaccumulation | Mobility | |------------------------|----------------------------|-------------------|-----------------|----------| | chromic acetate, basic | No Data Available | No Data Available | | | # Section 13 - DISPOSAL CONSIDERATIONS # **US EPA Waste Number & Descriptions** A. General Product Information Toxicity characteristic: use EPA hazardous waste number D007 (waste code E) if this substance, in a solid waste, produces an extract containing greater than 5 mg/L of chromium. # **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorized landfill. - Where possible retain label warnings and MSDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. • Where in doubt contact the responsible authority. For small quantities: - Dissolve the material (in water or acid solution as appropriate) or convert it to a water soluble state with appropriate oxidizing agent. - Precipitate as the sulfide, adjusting the pH to neutral to complete the precipitation. - Filter off sulfide solids for recovery or disposal to approved land-fill. - Destroy excess sulfide in solution with, for example, sodium hypochlorite, neutralise, and flush to sewer (subject to local regulation). - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **Section 14 - TRANSPORTATION INFORMATION** NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG # **Section 15 - REGULATORY INFORMATION** # chromic acetate, basic (CAS: 39430-51-8) is found on the following regulatory lists; "Canada Non-Domestic Substances List (NDSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory" # Section 16 - OTHER INFORMATION # LIMITED EVIDENCE - Cumulative effects may result following exposure*. - * (limited evidence). - Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. - For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards: OSHA Standards - 29 CFR: 1910.132 - Personal Protective Equipment - General requirements 1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection 1910.138 - Hand Protection Eye and face protection - ANSI Z87.1 Foot protection - ANSI Z41 Respirators must be NIOSH approved. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net Issue Date: Oct-16-2009 Print Date:Feb-9-2012