

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

DOR-1 siRNA (m): sc-42149

The Power to Question

BACKGROUND

Endogenous opioid peptides and opiates, like morphine, transmit their pharma-cological effects through membrane bound opioid receptors. Pharmacological studies and molecular cloning have led to the identification of three different types of opioid receptor, $\mu\text{-type}$, $\delta\text{-type}$ and $\kappa\text{-type}$, also designated MOR-1, DOR-1 and KOR-1, respectively. MOR-1 is a receptor for $\beta\text{-endorphin}$, DOR-1 is a receptor for enkephalins, and KOR-1 is a receptor for dynorphins. The three opioid receptor types are highly homologous and belong to the superfamily of G protein-coupled receptors. Opioid receptors have been shown to modulate a range of brain functions, including instinctive behavior and emotions. This regulation is thought to involve the inhibition of neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance.

REFERENCES

- Chang, K.J., et al. 1979. Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificty. J. Biol. Chem. 254: 2610-2618.
- 2. Cherubini, E., et al. 1985. μ and κ -opioids inhibit transmitter release by different mechanisms. Proc. Natl. Acad. Sci. USA 82: 1860-1863.
- 3. Schoffelmeer, A.N., et al. 1988. μ -, δ and κ -opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur. J. Pharmacol. 154: 169-178.
- Knapp, R.J., et al. 1995. Molecular biology and pharmacology of cloned opioid receptors. FASEB J. 9: 516-525.
- Satoh, M., et al. 1995. Molecular pharmacology of the opioid receptors. Pharmacol. Ther. 68: 343-364.
- 6. Minami, M., et al. 1995. Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci. Res. 23: 121-145.
- Simmons, M.L., et al. 1996. κ-opioid receptor activation of a dendrotoxinsensitive potassium channel mediates presynaptic inhibition of mossy fiber neurotransmitter release. Mol. Pharmacol. 50: 80-85.
- 8. Singh, V.K., et al. 1997. Molecular biology of opioid receptors: recent advances. Neuroimmunolmodulation 4: 285-297.

CHROMOSOMAL LOCATION

Genetic locus: Oprd1 (mouse) mapping to 4 D2.3.

PRODUCT

DOR-1 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see DOR-1 shRNA Plasmid (m): sc-42149-SH and DOR-1 shRNA (m) Lentiviral Particles: sc-42149-V as alternate gene silencing products.

For independent verification of DOR-1 (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-42149A, sc-42149B and sc-42149C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

DOR-1 siRNA (m) is recommended for the inhibition of DOR-1 expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor DOR-1 gene expression knockdown using RT-PCR Primer: DOR-1 (m)-PR: sc-42149-PR (20 μ l, 466 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

 Zagon, I.S., et al. 2011. T lymphocyte proliferation is suppressed by the opioid growth factor ([Met⁵]-enkephalin)-opioid growth factor receptor axis: implication for the treatment of autoimmune diseases. Immunobiology 216: 579-590.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**