Produktinformation Forschungsprodukte & Biochemikalien Zellkultur & Verbrauchsmaterial Diagnostik & molekulare Diagnostik Laborgeräte & Service Weitere Information auf den folgenden Seiten! See the following pages for more information! ## Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen ## Zuschläge - Mindermengenzuschlag - Trockeneiszuschlag - Gefahrgutzuschlag - Expressversand ### SZABO-SCANDIC HandelsgmbH Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 mail@szabo-scandic.com www.szabo-scandic.com linkedin.com/company/szaboscandic in # PTEN siRNA (h2): sc-44272 The Power to Question #### **BACKGROUND** As human tumors progress to advanced stages, one genetic alteration that occurs at high frequency is a loss of heterozygosity (LOH) at chromosome 10q23. Mapping of homozygous deletions on this chromosome led to the isolation of the PTEN gene, also designated MMAC1 (for mutated in multiple advanced cancers) and TEP1. This candidate tumor suppressor gene exhibits a high frequency of mutations in human glioblastomas and is also mutated in other cancers, including sporadic brain, breast, kidney and prostate cancers. PTEN has been associated with Cowden disease, an autosomal dominant cancer predisposition syndrome. The PTEN gene product is a putative protein tyrosine phosphatase that is localized to the cytoplasm and shares extensive homology with the cytoskeletal proteins tensin and auxilin. Gene transfer studies have indicated that the phosphatase domain of PTEN is essential for growth suppression of glioma cells. #### **REFERENCES** - 1. Bigner, S.H., et al. 1988. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res. 48: 405-411. - 2. James, C.D., et al. 1988. Clonal genomic alterations in glioma malignancy stages. Cancer Res. 48: 5546-5551. - 3. Steck, P.A., et al. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15: 356-362. #### **CHROMOSOMAL LOCATION** Genetic locus: PTEN (human) mapping to 10q23.31. #### **PRODUCT** PTEN siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see PTEN shRNA Plasmid (h2): sc-44272-SH and PTEN shRNA (h2) Lentiviral Particles: sc-44272-V as alternate gene silencing products. For independent verification of PTEN (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-44272A, sc-44272B and sc-44272C. #### STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### **APPLICATIONS** PTEN siRNA (h2) is recommended for the inhibition of PTEN expression in human cells. #### **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. #### **GENE EXPRESSION MONITORING** PTEN (A2B1): sc-7974 is recommended as a control antibody for monitoring of PTEN gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500). #### **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor PTEN gene expression knockdown using RT-PCR Primer: PTEN (h2)-PR: sc-44272-PR (20 μ l, 531 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **SELECT PRODUCT CITATIONS** - Lincová, E., et al. 2009. Multiple defects in negative regulation of the PKB/ Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs. Biochem. Pharmacol. 78: 561-572. - Pernicová, Z., et al. 2011. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 13: 526-536. - 3. Cai, L., et al. 2015. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 6: 7838-7850. - Cai, L.M., et al. 2015. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34: 2156-2166. - Yang, F., et al. 2018. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci. 213: 149-157. - 6. Han, K., et al. 2019. MicroRNA-494 promotes the proliferation and migration of human glioma cancer cells through the protein kinase B/ mechanistic target of rapamycin pathway by phosphatase and tensin homolog expression. Oncol. Rep. 41: 351-360. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com