

## Produktinformation



Forschungsprodukte & Biochemikalien



Zellkultur & Verbrauchsmaterial



Diagnostik & molekulare Diagnostik



Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!



## Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

## Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

### SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in



# Stat3 siRNA (h2): sc-44275



The Power to Question

#### **BACKGROUND**

Membrane receptor signaling by various ligands, including interferons and growth hormones such as EGF, induces activation of JAK kinases, which then leads to tyrosine phosphorylation of the various Stat transcription factors. Stat1 and Stat2 are induced by IFN- $\alpha$  and form a heterodimer, which is part of the ISGF-3 transcription factor complex. Although early reports indicate Stat3 activation by EGF and IL-6, it has been shown that Stat3 $\beta$  appears to be activated by both while Stat3 $\alpha$  is activated by EGF, but not by IL-6. Highest expresion of Stat4 is seen in testis and myeloid cells. IL-12 has been identified as an activator of Stat4. Stat5 has been shown to be activated by Prolactin and by IL-3. Stat6 is involved in IL-4 activated signaling pathways.

#### **REFERENCES**

- Zhong, Z., et al. 1994. Stat3: a Stat family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264: 95-98.
- Darnell, J.E., et al. 1994. JAK-Stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415-1421.
- Hou, J., et al. 1994. An interleukin-4-induced transcription factor: IL-4 Stat. Science 265: 1701-1706.
- Yamamoto, K., et al. 1994. Stat4, a novel γ interferon activation sitebinding protein expressed in early myeloid differentiation. Mol. Cell. Biol. 14: 4342-4349.
- 5. Pallard, C., et al. 1995. Interleukin-3, erythropoietin, and Prolactin activate a Stat5-like factor in lymphoid cells. J. Biol. Chem. 270: 15942-15945.

#### **CHROMOSOMAL LOCATION**

Genetic locus: STAT3 (human) mapping to 17q21.2.

#### **PRODUCT**

Stat3 siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10  $\mu$ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Stat3 shRNA Plasmid (h2): sc-44275-SH and Stat3 shRNA (h2) Lentiviral Particles: sc-44275-V as alternate gene silencing products.

For independent verification of Stat3 (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-44275A, sc-44275B and sc-44275C.

#### STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330  $\mu$ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330  $\mu$ l of RNAse-free water makes a 10  $\mu$ M solution in a 10  $\mu$ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

#### **APPLICATIONS**

Stat3 siRNA (h2) is recommended for the inhibition of Stat3 expression in human cells.

#### **SUPPORT REAGENTS**

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

#### **GENE EXPRESSION MONITORING**

Stat3 (F-2): sc-8019 is recommended as a control antibody for monitoring of Stat3 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG $\kappa$  BP-HRP: sc-516102 or m-lgG $\kappa$  BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker<sup>TM</sup> Molecular Weight Standards: sc-2035, UltraCruz<sup>®</sup> Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG $\kappa$  BP-FITC: sc-516140 or m-lgG $\kappa$  BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz<sup>®</sup> Mounting Medium: sc-24941 or UltraCruz<sup>®</sup> Hard-set Mounting Medium: sc-359850.

#### **RT-PCR REAGENTS**

Semi-quantitative RT-PCR may be performed to monitor Stat3 gene expression knockdown using RT-PCR Primer: Stat3 (h2)-PR: sc-44275-PR (20  $\mu$ l, 500 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

#### **SELECT PRODUCT CITATIONS**

- Xu, S., et al. 2013. Discovery of a novel orally active small-molecule gp130 inhibitor for the treatment of ovarian cancer. Mol. Cancer Ther. 12: 937-949.
- Jung, C.H., et al. 2016. Involvement of SULF2 in γ-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression. Oncotarget 7: 16090-16103.
- Catar, R., et al. 2017. IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J. Am. Soc. Nephrol. 28: 1188-1199
- 4. Jung, C.H., et al. 2019. Mitochondrial superoxide dismutase 2 mediates γ-irradiation-induced cancer cell invasion. Exp. Mol. Med. 51: 14.

#### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.