

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

MOX-2 siRNA (m): sc-149520

The Power to Question

BACKGROUND

Closely related homeobox proteins, MOX-1 and MOX-2, belong to a family of nonclustered, diverged homeobox genes that are expressed in overlapping patterns in the paraxial mesoderm and its derivatives. MOX-1 and MOX-2 function transiently in the formation of mesodermal and mesenchymal derivatives. MOX-1 and MOX-2 are implicated in the early steps of mesoderm formation during gastrulation. In addition, the MOX proteins are also involved in somatic differentiation. Significantly, MOX-1 associates more strongly with Pax-1, whereas MOX-2 preferentially associates with Pax-3. Specifically, expression of MOX-2 (also known as mesenchyme homeobox 2 or GAX), has been shown to be critical in axial skeleton development. MOX-2 is not needed for the migration of myogenic precursors into the limb bud, but it is essential for normal appendicular muscle formation and for the normal regulation of myogenic genes. MOX-2 is expressed in placental tissue. The human MEOX2 gene maps to chromosome 7p21.2 and encodes the MOX-2 protein. Mutations in the gene may be involved in craniofacial and/or skeletal abnormalities.

REFERENCES

- Candia, A.F., et al. 1992. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116: 1123-1136.
- 2. Candia, A.F., et al. 1996. Differential localization of Mox-1 and Mox-2 proteins indicates distinct roles during development. Int. J. Dev. Biol. 40: 1179-1184.
- Stelnicki, E.J., et al. 1997. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin. Differentiation 62: 33-41.
- 4. Mankoo, B.S., et al. 1999. Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 400: 69-73.
- Quinn, L.M., et al. 2000. The homeobox genes MSX2 and M0X2 are candidates for regulating epithelial-mesenchymal cell interactions in the human placenta. Placenta 21: 50-54.
- 6. Stamataki, D., et al. 2001. Homeodomain proteins Mox1 and Mox2 associate with Pax1 and Pax3 transcription factors. FEBS Lett. 499: 274-278.

CHROMOSOMAL LOCATION

Genetic locus: Meox2 (mouse) mapping to 12 A3.

PRODUCT

MOX-2 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see MOX-2 shRNA Plasmid (m): sc-149520-SH and MOX-2 shRNA (m) Lentiviral Particles: sc-149520-V as alternate gene silencing products.

For independent verification of MOX-2 (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-149520A, sc-149520B and sc-149520C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

MOX-2 siRNA (m) is recommended for the inhibition of MOX-2 expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

MOX-2 (A-8): sc-376748 is recommended as a control antibody for monitoring of MOX-2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor MOX-2 gene expression knockdown using RT-PCR Primer: MOX-2 (m)-PR: sc-149520-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

1. Sul, O.J., et al. 2017. Lipopolysaccharide (LPS)-induced autophagy is responsible for enhanced osteoclastogenesis. Mol. Cells 40: 880-887.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com