

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

SANTA CRUZ BIOTECHNOLOGY, INC.

Cdk2 siRNA (h2): sc-156139

BACKGROUND

In vertebrates, as in yeast, multiple cyclins have been identified, including a total of eight such regulatory proteins in mammals. In contrast to the situation in yeast, the Cdc2 p34 kinase is not the only catalytic subunit identified in vertebrates that can interact with cyclins. While Cdc2 p34 is essential for the G₂ to M transition in vertebrate cells, a second Cdc2-related kinase has also been implicated in cell cycle control. This protein, designated cyclin-dependent kinase 2 (Cdk2) p33, also binds to cyclins and its kinase activity is temporally regulated during the cell cycle. Several additional Cdc2 p34-related cyclin dependent kinases have been identified. These include Cdk3-Cdk8, PCTAIRE-1–3 and KKIALRE.

REFERENCES

- Riabowol, K., et al. 1989. The Cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57: 393-401.
- Morla, A.O., et al. 1989. Reversible tyrosine phosphorylation of Cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58: 193-203.
- Pines, J. and Hunter, T. 1989. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34^{Cdc2}. Cell 58: 833-846.
- Kobayashi, H., et al. 1991. Cyclins and their partners during *Xenopus* oocyte maturation. Cold Spring Harb. Symp. Quant. Biol. 56: 437-447.
- 5. Xiong, Y., et al. 1991. Human D-type cyclin. Cell 65: 691-699.
- 6. Pagano, M., et al. 1992. Cyclin A is required at two points in the human cell cycle. EMBO J. 11: 961-971.

CHROMOSOMAL LOCATION

Genetic locus: CDK2 (human) mapping to 12q13.2.

PRODUCT

Cdk2 siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Cdk2 shRNA Plasmid (h2): sc-156139-SH and Cdk2 shRNA (h2) Lentiviral Particles: sc-156139-V as alternate gene silencing products.

For independent verification of Cdk2 (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-156139A, sc-156139B and sc-156139C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\mathsf{Cdk2}\ \mathsf{siRNA}\ (\mathsf{h2})$ is recommended for the inhibition of $\mathsf{Cdk2}\ \mathsf{expression}\ \mathsf{in}\ \mathsf{human}\ \mathsf{cells}.$

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

Cdk2 (D-12): sc-6248 is recommended as a control antibody for monitoring of Cdk2 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker[™] Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-IgGκ BP-FITC: sc-516140 or m-IgGκ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor Cdk2 gene expression knockdown using RT-PCR Primer: Cdk2 (h2)-PR: sc-156139-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- 1. Pernicová, Z., et al. 2014. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer 13: 113.
- Su, Y., et al. 2018. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev. 32: 1398-1419.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.