

## Produktinformation



Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!



Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

### Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

### SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

## Data Sheet (Cat.No.T2966)

# TargetM**Ò**I

### Beta-Sitosterol

| Chemical Propert  | ties                                                     |                     |
|-------------------|----------------------------------------------------------|---------------------|
| CAS No. :         | 83-46-5                                                  | ОН                  |
| Formula:          | C29H50O                                                  | H CH3               |
| Molecular Weight: | 414.71                                                   | THE THE             |
| Appearance:       | no data available                                        | н, сн               |
| Storage:          | Powder: -20°C for 3 years   In solvent: -80°C for 1 year | н <sub>а</sub> с сн |
|                   |                                                          |                     |

### **Biological Description**

| Description   | Beta-Sitosterol (SKF 14463) has recently been shown to induce G2/M arrest,<br>endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways.<br>Beta-Sitosterol (SKF 14463), a main dietary phytosterol found in plants, may have the<br>potential for prevention and therapy for human cancer. Although the exact mechanism<br>of action of Beta-Sitosterol (SKF 14463) is unknown, it may be related to cholesterol<br>metabolism or anti-inflammatory effects (via interference with prostaglandin<br>metabolism). Beta-Sitosterol (SKF 14463) induces apoptosis and activates key caspases<br>in MDA-MB-231 human breast cancer cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Targets(IC50) | Apoptosis,Lipase,Endogenous Metabolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In vitro      | Bioactivity-guided isolation afforded three compounds from the hexane fraction of E.<br>indica, namely, Beta-Sitosterol (β-sitosterol), Stigmasterol, and Lutein respectively. Both<br>compounds are found to possess very low PPL inhibition activity, that is, 2.99±0.80%<br>(Beta-Sitosterol) of inhibition at 100 µg/mL (242 µM) and 2.68±0.38% (Stigmasterol) of<br>inhibition at 100 µg/mL (243 µM), respectively. Weak PPL inhibition activity of Beta-<br>Sitosterol and Stigmasterol isolated from Alpinia zerumbet with IC50 value of 99.99±1.86<br>µg/mL and 125.05±4.76 µg/mL, respectively, in comparison with the inhibition shown by<br>Curcumin (IC50=4.92±0.21 µg/mL) and Quercetin (IC50=18.60±0.86 µg/mL) which are<br>used as positive controls in their study. Beta-Sitosterol and Stigmasterol are recorded<br>with weak PPL inhibitory activity of only 3.0±0.8% and 2.7±0.4% at 100 µg/mL,<br>respectively, (i.e., 242 µM and 243 µM) in contrast (34.5±5.4% at 100 µg/mL), which are<br>comparatively lower than that recorded in literature (i.e., 50% PPL inhibition at 100<br>µg/mL)[1]. Sitosterol is an important compound extracted from the leaves of Aloe vera.<br>It inhibits the growth of promastigotes of L. donovani which is a causative agent for life<br>threatening visceral leishmaniasis disease[2]. |
| In vivo       | Beta-Sitosterol (β-sitosterol) treatment markedly decreased immobility times in mice<br>across all tested doses (10, 20, and 30 mg/kg) in both Forced Swim Test (FST) and Tail<br>Suspension Test (TST), indicating a notable antidepressant effect. The efficacy of β-<br>sitosterol at 30 mg/kg was comparable to that of the positive control, fluoxetine (20<br>mg/kg), demonstrating the most robust antidepressant effect against the control group<br>(P < 0.001). This effect was consistently observed across the varying doses in the TST,<br>with percentage decrease in immobility (DID) values for FST and TST being 39.27%,<br>51.23%, and 57.48% for 10, 20, and 30 mg/kg respectively, and 31.63%, 43.95%, and<br>53.38% for the same doses in TST. These findings confirm the dose-dependent<br>antidepressant activity of Beta-Sitosterol in animal models, highlighting its potential in                                                                                                                                                                                                                                                                                                                                                                                                                                      |

A DRUG SCREENING EXPERT

depressive disorder management.

| Solubility Information    |                                                                                                                                             |            |            |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Solubility                | Ethanol: 3.32 mg/mL (8 mM),Sonication is recommended.<br>DMSO: Insoluble<br>(< 1 mg/ml refers to the product slightly soluble or insoluble) |            |            |
| Preparing Stock Solutions |                                                                                                                                             |            |            |
|                           | 1mg                                                                                                                                         | 5mg        | 10mg       |
| 1 mM                      | 2.4113 mL                                                                                                                                   | 12.0566 mL | 24.1132 mL |
| 5 mM                      | 0.4823 mL                                                                                                                                   | 2.4113 mL  | 4.8226 mL  |
| 10 mM                     | 0.2411 mL                                                                                                                                   | 1.2057 mL  | 2.4113 mL  |
| 50 mM                     | 0.0482 mL                                                                                                                                   | 0.2411 mL  | 0.4823 mL  |

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

#### Reference

Fan Y, et al. β-Sitosterol Suppresses Lipopolysaccharide-Induced Inflammation and Lipogenesis Disorder in Bovine Mammary Epithelial Cells. Int J Mol Sci. 2023 Sep 27;24(19):14644.

Inhibitor • Natural Compounds • Compound Libraries • Recombinant Proteins This product is for Research Use Only• Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E\_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481