

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

MagnaLINK® Streptavidin Magnetic Beads

Cat. No. M-1003

Storage 2°-8°C—Do Not Freeze.

Description

MagnaLINK Streptavidin Magnetic Beads have the highest biotin binding capacity of any uniform streptavidin magnetic bead on the market (>10 nmol/mg beads). Based on SoluLINK® bioconjugation technology, MagnaLINK Streptavidin Magnetic Beads can be used to immobilize biotinylated biomolecules including antibodies, proteins, dsDNA, oligonucleotides, and genomic DNA. A main advantage of MagnaLINK Streptavidin Magnetic Beads is their exceptional size uniformity (2.8 ± 0.2 microns). In combination with their high binding capacity and high surface area, this reduces the overall particle mass required to immobilize a biotinylated sample, leading to lower nonspecific background and reduced costs, making MagnaLINK Streptavidin Magnetic Beads an affordable solution for automated, high throughput immobilization processes. MagnaLINK Streptavidin Magnetic Beads are also ideal for generating single-stranded PCR templates by removal of the unbiotinylated competing PCR strand to dramatically increase hybridization efficiency to complementary targets. MagnaLINK Streptavidin Magnetic Beads are supplied at 1% solids (10 mg/ml) in nuclease-free water with 0.05% sodium azide.

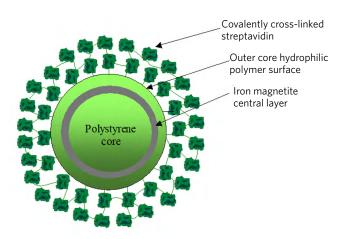


Figure 1. Cross-section of MagnaLINK Streptavidin Magnetic Beads.

Together we breakthrough™

Protocol

To determine the quantity of MagnaLINK Streptavidin Magnetic Beads required for your application, please refer to Table 1.

Ligand	MagnaLINK Bead Binding Capacity	Typical 2.8 μm Bead Binding Capacity
Free Biotin	>12 nmol/mg	0.9 nmol/mg
Biotinylated Oligo (23-mer)	>2.5 nmol/mg	NA
Biotinylated IgG (4 biotins per IgG)	>750 pmol/mg (113 µg/mg)	60 pmol/mg (10 µg/mg)

Table 1. MagnaLINK Streptavidin Magnetic Bead binding capacity vs. typical bead of similar size. For reference, $5 \,\mu$ l of MagnaLINK Streptavidin Beads at 10 mg/ml ($50 \,\mu$ g) is sufficient to bind 40 pmol of biotinylated oligonucleotide ($-26 \,\mu$ g) or a biotinylated PCR product ($-15 \,\mu$ g at $500 \,b$ p). This volume is also sufficient to immobilize 38 pmol of biotinylated antibody ($-5.7 \,\mu$ g).

A. Washing procedure for MagnaLINK Streptavidin Magnetic Beads

MagnaLINK Streptavidin Magnetic Beads should be washed prior to use to remove residual azide and to equilibrate the beads in a buffer appropriate for the intended application. See the specific application sections in this user guide for recommended immobilization and wash buffers.

Note: Formulations for recommended binding and wash buffers referenced in this protocol may be found in the Appendix.

- Resuspend MagnaLINK Streptavidin Magnetic Beads in their original vial using a vortex mixer to mix vigorously for 1–2 minutes. If a bath sonicator is available, the beads may also be sonicated for 1–2 minutes to ensure a monodisperse solution.
- 2. Transfer the desired volume of resuspended MagnaLINK Streptavidin Magnetic Beads to a new tube. At least 2 μ l (20 μ g) is recommended per sample for manual procedures to observe the bead pellet more easily.
- 3. Add sufficient wash buffer to bring the final volume to at least 250 μ l, then vortex to resuspend and wash the beads.
 - Note: A minimum volume of 250 μ l wash buffer is recommended. For larger volumes of beads, use approximately 1 ml of buffer per 4 mg of beads, or other volume compatible with the workflow.
- 4. Place the tube on a magnet for 2 minutes to pellet the beads, then carefully remove and discard the supernatant without disturbing the bead pellet using a P-200 pipet.
- 5. Repeat steps 3 and 4 one additional time.
- 6. Remove the tube from the magnet and resuspend the washed beads in a suitable volume of wash buffer (a bead concentration of 2–4 mg/ml is suitable for most applications).
- MagnaLINK Streptavidin Magnetic Beads are now ready for immobilization of biotinylated biomolecule.

Continued on next page.

Continued from page 1.

Together we breakthrough™

B. Immobilization of biotinylated PCR products

- Calculate the mass of MagnaLINK Streptavidin Magnetic Beads required to bind the desired mass of purified biotinylated PCR product and transfer this amount to an appropriately sized tube. Table 1 may be used as a guide for these calculations.
 - Note: The presence of biotinylated primers will compete with biotinylated PCR product for binding to streptavidin beads. Kits are available for purification of PCR products to remove excess primers. Follow the manufacturer's instructions to purify the PCR product prior to immobilization. If purification is not desired, use an excess of MagnaLINK Streptavidin Magnetic Beads (approximately 2-fold) to account for binding of the biotinylated primers.
- 2. Wash the beads using Nucleic Acid Binding and Wash Buffer as described in section A, if not already performed.
- 3. Add the purified PCR product (free of excess biotinylated primers) to the washed MagnaLINK Streptavidin Magnetic Beads.
- 4. Vortex gently to mix.
- Incubate for 30 minutes at room temperature on a platform shaker to keep the beads fully suspended during the binding process. For maximum capture efficiency, do not allow the beads to settle during binding.
 - Note: For biotinylated oligonucleotides and DNA fragments <2 kb, a 30-minute incubation is sufficient. For larger amplicons (\geq 5 kb), binding at 40°C for 60 minutes may be required. Inefficient biotinylation of the amplicon or the presence of biotinylated primers will lead to reduced capture efficiency.
- After immobilization, place the tube on a magnet for 2 minutes to
 pellet the beads, then carefully remove the unbound supernatant
 without disturbing the bead pellet using a P-200 pipet. Save the
 supernatant for analysis, if desired.
 - Note: The optical density of the supernatant can be used to estimate the amount of unbound DNA remaining (e.g., for double-stranded DNA 1 OD₂₆₀ = $50 \mu g/ml$, and for single-stranded DNA 1 OD₂₆₀ = $33 \mu g/ml$).
- Wash the MagnaLINK Streptavidin Magnetic Beads/immobilized amplicon three times using an appropriate volume of Nucleic Acid Binding and Wash Buffer.
- 8. After the third and final wash, carefully remove and discard the supernatant without disturbing the bead pellet using a P-200 pipet, then proceed immediately to section C.

- C. Dissociation of unbiotinylated PCR strand from immobilized PCR product
- 1. Resuspend the DNA-coated MagnaLINK Streptavidin Magnetic Beads in at least 50 μ l of freshly prepared 100 mM sodium hydroxide, or 50 μ l of 100 mM sodium hydroxide per 50 μ g of beads used to capture the PCR product, whichever is higher.
 - Note: 100 mM NaOH should be prepared daily from a 10N NaOH stock solution using ultrapure water.
- 2. Incubate the beads in 100 mM NaOH at room temperature for 1 minute with shaking.
- Place the tube back on the magnet for 1 minute, then transfer the supernatant to a new labeled tube. This supernatant contains the nonbiotinylated DNA strand.
- 4. Immediately neutralize the non-biotinylated strand by adding 5.2 μl of 1 M acetic acid for every 50 μl of 100 mM NaOH used. Confirm the pH of the neutralized solution by spotting 1 μl on 0-14 pH paper. After neutralization, store the solution at 4°C or below for later use.
 - Note: If necessary, add small incremental volumes (e.g., 0.5μ l) of either 100 mM NaOH or 1 M acetic acid to achieve neutrality. Always confirm the pH of the solution by applying a 1 μ l aliquot of the neutralized sample onto pH paper. A pH in the range of 7–9 is preferable for DNA.
- 5. Immediately wash the beads coated with the immobilized biotinylated strand three times with Nucleic Acid Binding and Wash Buffer.
- 6. Resuspend the MagnaLINK Streptavidin Magnetic Beads (coated with the immobilized biotinylated capture strand) in Nucleic Acid Binding and Wash Buffer. Leave the beads in this solution at 4°C until used in other downstream applications, such as genomic DNA capture. Do not freeze the beads, as this will lead to shearing.
- D. Hybridization of genomic DNA to MagnaLINK Streptavidin Magnetic Beads
- Place MagnaLINK Streptavidin Magnetic Beads with immobilized biotinylated capture strand on a magnet for 2 minutes, then carefully remove the supernatant without disturbing the bead pellet using a P-200 pipet.
- 2. Wash the beads once with 0.25 ml of pre-hybridization buffer and carefully remove the supernatant.
- 3. Add 50-100 μ l of pre-hybridization buffer containing heat-denatured blocking DNA to the beads and incubate on a heated shaker at 45°C for 2 hours.
- After incubation, carefully remove the pre-hybridization blocking buffer using a magnet and add the solution containing heat-denatured genomic DNA.

Page 2 Continued on next page.

Together we breakthrough™

- Gently but thoroughly mix, then place the tube back on the heated shaker. Allow the hybridization reaction to incubate for several hours to overnight.
- 6. Place the beads on a magnet for 2 minutes, then carefully remove the supernatant without disturbing the bead pellet.
- 7. Wash the beads with 0.25 ml of Stringency Wash Buffer I on a heated mixer at 45°C for 5 minutes.
- 8. Place the beads back on the magnet for 2 minutes, then carefully remove and discard the supernatant.
- 9. Repeat steps 7 and 8 using Stringency Wash Buffer II. Discard the supernatant.
- 10. Release hybridized genomic DNA by heating the beads in 50–100 μ l of molecular biology grade water at 95°C for 5 minutes.
- 11. Quickly place the beads on a magnet for 1 minute, then carefully transfer the supernatant containing genomic DNA to a labeled storage tube.

E. Immobilization of biotinylated antibody

- Refer to Table 1 to determine the mass of MagnaLINK Streptavidin
 Magnetic Beads required to capture and immobilize the desired mass
 of biotinylated-IgG or other biotinylated protein.
 - Note: 100 μ l of MagnaLINK Streptavidin Beads at 10 mg/ml (1.0 mg) is sufficient to bind 750 pmol of biotinylated antibody (~113 μ g) or other biotinylated protein of similar molecular weight. When using antibody-coated beads in complex samples (e.g., cell lysate), preblocking will reduce non-specific binding of cellular proteins to the bead surface. See section F for the recommended blocking solution and procedure.
- 2. Transfer the required volume of stock or pre-blocked MagnaLINK Streptavidin Magnetic Beads into a 1.5 ml microcentrifuge tube.
- 3. Place the tube on a magnet for 2 minutes to pellet the beads, then carefully remove and discard the supernatant without disturbing the bead pellet using a P-200 pipet.
- 4. Wash the beads with 0.25 ml of 1X Antibody Binding and Wash Buffer. The volume of wash buffer may be increased for larger samples (e.g., approximately 1 ml of wash buffer per 4 mg of beads).
- 5. Place the beads back on the magnet for 2 minutes, then carefully remove and discard the supernatant.
- 6. Repeat steps 4 and 5 one additional time.

- Add 0.125 ml of 2X Antibody Binding and Wash Buffer, and 0.125 ml of biotinylated IgG sample to the MagnaLINK Streptavidin Magnetic Beads. These volumes may be increased proportionally for larger sample volumes.
- 8. Mix the MagnaLINK Streptavidin Magnetic Beads well, then incubate on a platform shaker at room temperature for 30 minutes to immobilize the biotinylated antibody.
- 9. After the incubation is complete, place the tube on the magnet for 2 minutes, then carefully remove the supernatant without disturbing the bead pellet.
- Wash the MagnaLINK Streptavidin Magnetic Beads twice using
 0.25 ml of 1X Antibody Binding and Wash Buffer.
- 11. The MagnaLINK Streptavidin Magnetic Beads with immobilized antibody are now ready for use.

F. Protein blocking procedure (for 1 mg of beads)

- Transfer 100 μl of resuspended MagnaLINK Streptavidin Magnetic Beads (at 10 mg/ml) to a 1.5 ml microcentrifuge tube.
- 2. Place the tube on a magnet for 2 minutes to pellet the beads, then carefully remove and discard the supernatant without disturbing the bead pellet using a P-200 pipet.
- Add 1 ml of Blocker™ Casein in TBS and resuspend the MagnaLINK Streptavidin Magnetic Beads with vigorous vortexing for 1-2 minutes. Bath sonication for 1-2 minutes may also be used to ensure a monodisperse bead suspension.
- 4. Place the tube on a platform shaker for 30 minutes.
- Place the tube on a magnet for 2 minutes, then carefully remove and discard the blocking solution without disturbing the pellet using a P-200 pipet.
- Wash the beads four times with 1 ml of 1X Antibody Binding and
 Wash Buffer. Ensure the beads are monodisperse between washes by
 vigorously vortexing. Sonication may also be used, if available.
- 7. After the final wash, resuspend the blocked MagnaLINK Streptavidin Magnetic Beads at 10 mg/ml using 100 μ l of 1X Antibody Binding and Wash Buffer.
- 8. The blocked MagnaLINK Streptavidin Magnetic Beads are now ready for use.

Page 3 Continued on next page.

Continued from page 3..

Together we breakthrough™

Appendix:

Use the following Nucleic Acid Binding and Wash Buffers for immobilization and washing of biotinylated oligonucleotides, PCR products, or other biotinylated nucleic acids.

Nucleic Acid Binding and Wash Buffer

50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween® 20, pH 8.0

Nucleic Acid Binding and Wash Buffer with Blocking DNA

50 mM Tris-HCl, 150 mM NaCl, $100~\mu g/ml$ denatured herring sperm DNA, 0.05% Tween-20, pH 8.0

Use the following buffers for genomic DNA capture and washing.

Pre-Hybridization Buffer

3X SSC Buffer, 100 $\mu g/ml$ denatured herring sperm DNA, 0.05% Tween 20, pH 7.0

Note: 20X Saline Sodium Citrate (SSC) buffer = 3.0 M NaCl, 0.3 M sodium citrate, pH 7.0

Hybridization Buffer

3X SSC + 0.05% Tween 20, pH 7.0

Stringency Wash Buffer I

2X SSC + 0.05% Tween 20, pH 7.0

Stringency Wash Buffer II

0.5X SSC + 0.05% Tween 20, pH 7.0

Use the following Antibody Binding and Wash Buffers for immobilization and washing of biotinylated antibodies and other proteins.

1X Antibody Binding and Wash Buffer

50 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 8.0

2X Antibody Binding and Wash Buffer

100 mM Tris-HCl, 300 mM NaCl, 0.1% Tween 20, pH 8.0

Bead Blocking Solution

Blocker Casein in TBS is recommended for blocking NanoLINK Streptavidin Magnetic Beads. Filter the casein solution through a 0.45 μm syringe filter before use for best results.

Note: Use only Hammarsten-grade casein for blocking NanoLINK Streptavidin Magnetic Beads since other sources of casein (e.g., nonfat milk) may contain endogenous biotin.

6737 Mowry Avenue, Newark CA 94560