Lavendustin C

Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Potent tyrosine kinase inhibitor.

SYNONYMS

C14-H13-N-O5, C14-H13-N-O5, "N-(2, 5-dihydroxybenzyl)-5-aminosalicylic acid", "N-(2, 5-dihydroxybenzyl)-5-aminosalicylic acid"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Considered an unlikely route of entry in commercial/industrial environments.

■ High oral doses of salicylates, such as aspirin, may cause a mild burning pain in the throat and stomach, causing vomiting. This is followed (within hours) by deep, rapid breathing, tiredness, nausea and further vomiting, thirst and diarrhea. The central nervous system is first stimulated, and then depression from failure occurs. Stimulation produces vomiting, hyperventilation, headache, ringing in the ears, confusion, behavior and mood changes, and generalized convulsions. Respiratory failure and cardiovascular collapse can result in death. There may also be sweating, skin eruptions, internal bleeding, kidney failure and inflamed pancreas. There may be bloody stools, purple skin spots or blood in the vomit. Many of these symptoms are due to disturbances in blood chemistry. A dose of 300 mg/kg can cause serious effects while 500 mg/kg can be lethal.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

• The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

INHALED

• The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

Principal routes of exposure are usually by skin contact/absorption and inhalation of generated dust.

Chronic exposure to salicylates produce problems with metabolism, central system disturbances, or kidney damage. Those with pre-existing damage to the eye, skin or kidney are especially at risk. Hypersensitive reactions can occur, especially in people with asthma. These symptoms include itchy wheals and other skin eruptions, an inflamed nose, shortness of breath and serious narrowing of the airways (which can even cause death). Chronic exposure to parabens by skin contact, ingestion or injection can cause hypersensitive reactions. There may be cross-sensitivity between different species, so people can be develop allergic symptoms if they were sensitized by other chemicals. Symptoms include acute narrowing of the airways, hives (itchy wheal), swelling, running nose and blurred vision. There may be anaphylactic shock and rash.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- .
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally
 lifting the upper and lower lids.
- · If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- · Immediately remove all contaminated clothing, including footwear
- · Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- for salicylate intoxication:
- Pending gastric lavage, use emetics such as syrup of Ipecac or delay gastric emptying and absorption by swallowing a slurry of activated charcoal. Do not give ipecac after charcoal.

- Gastric lavage with water or perhaps sodium bicarbonate solution (3%-5%). Mild alkali delays salicylate absorption from the stomach and perhaps slightly from the duodenum.
- Saline catharsis with sodium or magnesium sulfate (15-30 gm in water).
- Take an immediate blood sample for an appraisal of the patients acid-base status. A pH determination on an anaerobic sample of arterial blood is best. An analysis of the plasma salicylate concentrations should be made at the same time. Laboratory controls are almost essential for the proper management of severe salicylism.
- In the presence of an established acidosis, alkali therapy is essential, but at least in an adult, alkali should be withheld until its need is demonstrated by chemical analysis. The intensity of treatment depends on the intensity of acidosis. In the presence of vomiting, intravenous sodium bicarbonate is the most satisfactory of all alkali therapy.
- Correct dehydration and hypoglycemia (if present) by the intravenous administration of glucose in water or in isotonic saline. The administration of glucose may also serve to remedy ketosis which is often seen in poisoned children.
- Even patients without hypoglycemia, infusions of glucose adequate to produce distinct hyperglycemia are recommended to prevent glucose depletion in the brain. This recommendation is based on impressive experimental data in animals.
- Renal function should be supported by correcting dehydration and incipient shock. Overhydration is not justified. An alkaline urine should be maintained by the administration of alkali if necessary with care to prevent a severe systemic alkalosis. As long as urine remains alkaline (pH above 7.5), administration of an osmotic diuretic such as mannitol or perhaps THAM is useful, but one must be careful to avoid hypokalemia. Supplements of potassium chloride should be included in parenteral fluids
- Small doses of barbiturates, diazepam, paraldehyde, or perhaps other sedatives (but probably not morphine) may be required to suppress extreme restlessness and convulsions.
- For hyperpyrexia, use sponge baths.

The presence of petechiae or other signs of hemorrhagic tendency calls for large Vitamin K dose and perhaps ascorbic acid. Minor transfusions may be necessary since bleeding in salicylism is not always due to a prothrombin effect.

Haemodialysis and hemoperfusion have proved useful in salicylate poisoning, as have peritoneal dialysis and exchange transfusions, but alkaline diuretic therapy is probably sufficient except in fulminating cases.

[GOSSELIN, et al.: Clinical Toxicology of Commercial Products]

The mechanism of the toxic effect involves metabolic acidosis, respiratory alkalosis, hypoglycemia, and potassium depletion. Salicylate poisoning is characterized by extreme acid-base disturbances, electrolyte disturbances and decreased levels of consciousness. There are differences between acute and chronic toxicity and a varying clinical picture which is dependent on the age of the patient and their kidney function. The major feature of poisoning is metabolic acidosis due to "uncoupling of oxidative phosphorylation" which produces an increased metabolic rate, increased oxygen consumption, increased formation of carbon dioxide, increased heat production and increased utilization of glucose. Direct stimulation of the respiratory center leads to hyperventilation and respiratory alkalosis. This leads to compensatory increased renal excretion of bicarbonate which contributes to the metabolic acidosis which may coexist or develop subsequently. Hypoglycemia may occur as a result of increased glucose demand, increased rates of tissue glycolysis, and impaired rate of glucose synthesis. NOTE: Tissue glucose levels may be lower than plasma levels. Hyperglycemia may occur due to increased glycogenolysis. Potassium depletion occurs as a result of increased renal excretion as well as intracellular movement of potassium. Salicylates competitively inhibit vitamin K dependent synthesis of factors II, VII, IX, X and in addition, may produce a mild dose dependent hepatitis.

Salicylates are bound to albumin. The extent of protein binding is concentration dependent (and falls with higher blood levels). This, and the effects of acidosis, decreasing ionization, means that the volume of distribution increases markedly in overdose as does CNS penetration. The extent of protein binding (50-80%) and the rate of metabolism are concentration dependent. Hepatic clearance has zero order kinetics and thus the therapeutic half-life of 2-4.5 hours but the half-life in overdose is 18-36 hours. Renal excretion is the most important route in overdose. Thus when the salicylate concentrations are in the toxic range there is increased tissue distribution and impaired clearance of the drug. HyperTox 3.0 http://www.ozemail.com.au/-ouad/SALI0001.HTA.

Section 5 - FIRE FIGHTING MEASURES

Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available
Relative Vapor Density (air=1)	>1

Relative Vapor Density (air=1):

EXTINGUISHING MEDIA

- Foam.
- ٠
- Dry chemical powder. BCF (where regulations permit).
- Carbon dioxide.
- .
- Water spray or fog Large fires only. **FIRE FIGHTING**
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

Combustion products include: carbon monoxide (CO) and nitrogen oxides (NOx).

FIRE INCOMPATIBILITY

Avoid contamination with strong oxidizing agents as ignition may result.

PERSONAL PROTECTION

Glasses: Safety Glasses. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- Sweep up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.
- MAJOR SPILLS
- •
- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by using protective equipment and dust respirator.
- Prevent spillage from entering drains, sewers or water courses.
- Avoid generating dust.
- Sweep, shovel up.
- Recover product wherever possible.
- Put residues in labeled plastic bags or other containers for disposal.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Limit all unnecessary personal contact.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- When handling DO NOT eat, drink or smoke.
- · Always wash hands with soap and water after handling.
- Avoid physical damage to containers.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.

RECOMMENDED STORAGE METHODS

- - Polyethylene or polypropylene container.
- · Packing as recommended by manufacturer
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- Keep dry.
- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials.
- Protect containers against physical damage.
- Check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Inert or Nuisance Dust: (d) Total dust)		10				*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Inert or Nuisance Dust: (d) Respirable fraction)		5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Inert or Nuisance Dust: (d) Total dust)		15				
US - Hawaii Air Contaminant Limits	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Particulates not other wise regulated - Total dust)		10				
US - Hawaii Air Contaminant Limits	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Particulates not other wise regulated - Respirable fraction)		5				
US - Oregon Permissible Exposure Limits (Z3)	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Inert or Nuisance Dust: (d) Respirable fraction)		5				*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Particulates not otherwise regulated Respirable fraction)		5				
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5				
US - Michigan Exposure Limits for Air Contaminants	5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid (Particulates not otherwise regulated, Respirable dust)		5				

MATERIAL DATA

5-(2,5-DIHYDROXYBENZYLAMINO)-2-HYDROXYBENZOIC ACID:

■ These "dusts" have little adverse effect on the lungs and do not produce toxic effects or organic disease. Although there is no dust which does not evoke some cellular response at sufficiently high concentrations, the cellular response caused by P.N.O.C.s has the following characteristics:

• the architecture of the air spaces remain intact,

- scar tissue (collagen) is not synthesised to any degree,
- tissue reaction is potentially reversible.

Extensive concentrations of P.N.O.C.s may:

• seriously reduce visibility,

- · cause unpleasant deposits in the eyes, ears and nasal passages,
- contribute to skin or mucous membrane injury by chemical or mechanical action, per se, or by the rigorous skin cleansing procedures necessary for their removal. [ACGIH]

This limit does not apply:

- to brief exposures to higher concentrations
- nor does it apply to those substances that may cause physiological impairment at lower concentrations but for which a TLV has as yet to be determined.

This exposure standard applies to particles which

- are insoluble or poorly soluble* in water or, preferably, in aqueous lung fluid (if data is available) and
- have a low toxicity (i.e.. are not cytotoxic, genotoxic, or otherwise chemically reactive with lung tissue, and do not emit ionizing radiation, cause immune sensitization, or cause toxic effects other than by inflammation or by a mechanism of lung overload)

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- •
- Safety glasses.
- Safety glasses with side shields. •
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

Wear general protective gloves, e.g.. light weight rubber gloves.

OTHER

- Overalls.
- Impervious protective clothing
- Eyewash unit.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

100+ x PEL -* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P3 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Air Speed:
0.25-0.5 m/s (50-100 f/min)
0.5-1 m/s (100-200 f/min.)
1-2.5 m/s (200-500 f/min)
2.5-10 m/s (500-2000 f/min.)
Upper end of the range
1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use

4: Large hood or large air mass in motion

4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.			
State	Divided solid	Molecular Weight	275.3
Melting Range (°F)	Not available	Boiling Range (°F)	Not available
Solubility in water (g/L)	Partly miscible	Flash Point (°F)	Not available
pH (1% solution)	Not applicable	Decomposition Temp (°F)	Not available.
pH (as supplied)	Not applicable	Autoignition Temp (°F)	Not available
Vapour Pressure (mmHG)	Negligible	Upper Explosive Limit (%)	Not available.
Specific Gravity (water=1)	Not available	Lower Explosive Limit (%)	Not available
Relative Vapor Density (air=1)	>1	Volatile Component (%vol)	Negligible
Evaporation Rate	Not available		

APPEARANCE

Solid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

Presence of incompatible materials.

- Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

5-(2,5-dihydroxybenzylamino)-2-hydroxybenzoic acid

TOXICITY AND IRRITATION

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: 5-(2,5-DIHYDROXYBENZYLAMINO)-2-HYDROXYBENZOIC ACID:

Ecotoxicity

ngredient	Persistence: Persistence: Air Water/Soil		Bioaccumulation	Mobility
5-(2,5-dihydroxybenzylamino)-2- hydroxybenzoic acid	HIGH		LOW	MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Consult manufacturer for recycling options and recycle where possible .
- Consult Manufacturer for recycling options and recycle where possible
 Consult Waste Management Authority for disposal.
- Incinerate residue at an approved site.
- · Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

5-(2,5-dihydroxybenzylamino)-2-hydroxybenzoic acid (CAS: 125697-93-0) is found on the following regulatory lists;

"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-29-2010 Print Date:Apr-21-2010