Carbonyl Cyanide m-Chlorophenylhydrazone

sc-202984

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Carbonyl Cyanide m-Chlorophenylhydrazone

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

A potent uncoupler of oxidative phosphorylation.

SYNONYMS

C9-H5-ClN4, ClC6H4NHN:C(CN)2, CCCP, CCP, [(3-chlorophenyl)hydrazono]propanedinitrile, "mesoxalonitrile, (m-chlorophenyl)hydrazone", "mesoxalonitrile 3-chlorophenylhydrazone", "mesoxalonitrile 3-chlorophenylhydrazone", m-Cl-CCP, m-Cl-CCP, "propanedinitrile, [(3-chlorophenyl)hydrazono]-"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Contact with acids liberates very toxic gas.

Toxic by inhalation, in contact with skin and if swallowed.

Irritating to eyes, respiratory system and skin.

May cause long-term adverse effects in the environment.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.
- Nitrile poisoning exhibits similar symptoms to poisoning due to hydrogen cyanide. The substances irritate the eyes and skin, and are absorbed quickly and completely through the skin. The use of the term "organic nitriles" should be discouraged.

EYE

■ This material can cause eye irritation and damage in some persons.

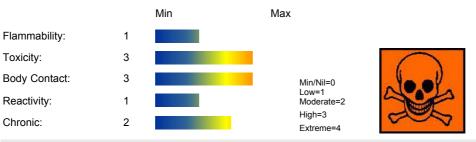
SKIN

- Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption.
- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of dusts, generated by the material, during the course of normal handling, may produce toxic effects.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS


■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

NAME CAS RN % carbonyl cyanide m-chlorophenylhydrazone 555-60-2 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
- At least 3 tablespoons in a glass of water should be given.
- Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is
 dissuaded because to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can
 decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include
 non-availability of charcoal and the ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

- REFER FOR MEDICAL ATTENTION WITHOUT DELAY.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a
 copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

(ICSC20305/20307).

ÈYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- · Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Quickly but gently, wipe material off skin with a dry, clean cloth.
- Immediately remove all contaminated clothing, including footwear.

- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center
- · Transport to hospital, or doctor.

INHALED

.

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- Signs symptoms of acute cyanide poisoning reflect cellular hypoxia and are often non-specific.
- Cyanosis may be a late finding.
- A bradycardia, hypertensive and tachypneic patient suggests poisoning especially if CNS and c ardiovascular depression subsequently occurs.
- Immediate attention should be directed towards assisted ventilation, administration of 100% oxygen, insertion of intravenous lines and institution of cardiac monitoring.
- Obtain an arterial blood gas immediately and correct any severe metabolic acidosis (pH below 7.15).
- Mildly symptomatic patients generally require supportive care alone. Nitrites should not be given indiscriminately in all cases of moderate to severe poisoning, they should be given in conjunction with thiosulfate. As a temporizing measure supply amyl nitrite perles (0.2ml inhaled 30 seconds every minute) until intravenous lines for sodium nitrite are established. 10 ml of a 3% solution is administered over 4 minutes to produce 20% methemoglobin in adults. Follow directly with 50 ml of 25% sodium thiosulfate, at the same rate, IV. If symptoms reappear or persist within 1/2-1 hour, repeat nitrite and thiosulfate at 50% of initial dose. As the mode of action involves the metabolic conversion of the thiosulfate to thiocyanate, renal failure may enhance thiocyanate toxicity.
- Methylene blue is not an antidote. [Ellenhorn and Barceloux: Medical Toxicology]

If amyl nitrite intervention is employed then Medical Treatment Kits should contain the following:

- One box containing one dozen amyl nitrite ampoules
- Two sterile ampoules of sodium nitrite solution (10 mL of a 3% solution in each)
- Two sterile ampoules of sodium thiosulfate solution (50 mL of a 25% solution in each)
- One 10 mL sterile syringe. One 50 mL sterile syringe. Two sterile intravenous needles. One tourniquet.
- · One dozen gauze pads.
- · Latex gloves
- A "Biohazard" bag for disposal of bloody/contaminated equipment.
- · A set of cyanide instructions on first aid and medical treatment.
- Notes on the use of amyl nitrite:-
- AN is highly volatile and flammable do not smoke or use around a source of ignition.
- If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapor from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs.
- Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
- Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep patient
 conscious.
- DO NOT overuse excessive use might put the patient into shock. Experience at DuPont plants has not shown any serious
 after-effects from treatment with amyl nitrite.

ADDITIONAL NOTES:

• Major medical treatment procedures may vary e.g. US (FDA method as recommended by DuPont) uses amyl nitrite as a methemoglobin generator, followed by treatment with sodium nitrite and then sodium thiosulfate.

MODES OF ACTION: Amyl nitrite (AN) reacts with hemoglobin (HB) to form about 5% methemoglobin (MHB). Sodium nitrite (NaNO2) reacts with hemoglobin to form approximately 20-30% methemoglobin. Methemoglobin attracts cyanide ions (CN) from tissue and binds with them to become cyanmethemoglobin (CNMHB). Sodium thiosulfate (Na2S2O3) converts cyanmethemoglobin to thiocyanate (HSCN) which is excreted by the kidneys. i.e. AN + HB = MHB NaNO2 + HB = MHB CN + MHB = CNMHB Na2S2O3 + CNMHB + O2 = HSCN

• The administration of the antidote salts is intravenous in normal saline, Ringers lactate or other available IV fluid.

Section 5 - FIRE FIGHTING MEASURES Vapour Pressure (mmHG): Negligible Upper Explosive Limit (%): Not available Specific Gravity (water=1): Not available Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- -● Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.

- · Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- .
- Combustible.
- Moderate fire hazard when exposed to heat or flame.
- When heated to high temperatures decomposes rapidly generating vapor which pressures and may then rupture containers
 with release of flammable and highly toxic isocyanate vapor.
- · Burns with acrid black smoke and poisonous fumes.
- Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide, hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

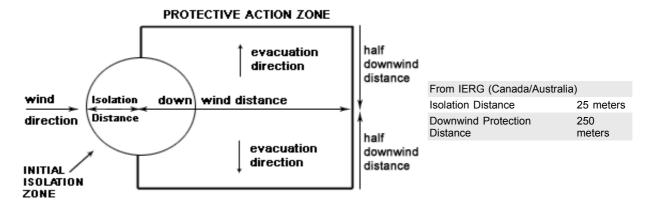
Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES


MINOR SPILLS

- Environmental hazard contain spillage.
- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

- Environmental hazard contain spillage.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- · Collect solid residues and seal in labeled drums for disposal.
- · Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and

unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose

rearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 154 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Lined metal can, Lined metal pail/drum
- · Plastic pail
- Polyliner drum
- · Packing as recommended by manufacturer.
- · Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- · Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- · Removable head packaging;
- Cans with friction closures and
- · low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorbent to absorbent spillage *. - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
 O: May be stored together with specific preventions
 +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³		STEL mg/m³		Peak mg/m³	Notes
US - Idaho - Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - California Permissible Exposure Limits for Chemical Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanide, as CN)	5					
US - Minnesota Permissible Exposure Limits (PELs)	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))		5				
US - Vermont Permissible Exposure Limits Table Z- 1-A Final Rule Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Vermont Permissible Exposure Limits Table Z- 1-A Transitional Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US OSHA Permissible Exposure Levels (PELs) - Table Z1	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Alaska Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Hawaii Air Contaminant Limits	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					(CAS (Varies with compound))
US - Washington Permissible exposure limits of air contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanide (as CN))	5		10			
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))				10	11	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Oregon Permissible Exposure Limits (Z1)	carbonyl cyanide m- chlorophenylhydrazone (Cyanides (as CN))	5					
US - Oregon Permissible Exposure Limits (Z3)	carbonyl cyanide m- chlorophenylhydrazone (Inert or Nuisance Dust: (d) Total dust)	10					*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	carbonyl cyanide m- chlorophenylhydrazone (Inert or Nuisance Dust: (d) Respirable fraction)	5					
US OSHA Permissible Exposure Levels (PELs) - Table Z3	carbonyl cyanide m- chlorophenylhydrazone (Inert or Nuisance Dust: (d) Total dust)	15					

carbonyl cyanide m-

US - Hawaii Air Contaminant Limits	chlorophenylhydrazone (Particulates not other wise regulated - Total dust)	10
US - Hawaii Air Contaminant Limits	carbonyl cyanide m- chlorophenylhydrazone (Particulates not other wise regulated - Respirable fraction)	5
US - Oregon Permissible Exposure Limits (Z3)	carbonyl cyanide m- chlorophenylhydrazone (Inert or Nuisance Dust: (d) Respirable fraction)	5 *
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Particulates not otherwise regulated Respirable fraction)	5
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5
US - Michigan Exposure Limits for Air Contaminants	carbonyl cyanide m- chlorophenylhydrazone (Particulates not otherwise regulated, Respirable dust)	5

EMERGENCY EXPOSURE LIMITS

Material	Revised IDLH Value (mg/m3)	Revised IDLH Value (ppm)
carbonyl cyanide m-chlorophenylhydrazone	25	

MATERIAL DATA

CARBONYL CYANIDE M-CHLOROPHENYLHYDRAZONE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

.

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- Eyewash unit.
- · Barrier cream.
- · Skin cleansing cream.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory.
 These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested
 as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

RESPIRATOR

•

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- · Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant: Air Speed:

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of

2.5-10 m/s (500-2000 f/min.)

very high rapid air motion).

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Does not mix with water.

Contact with acids liberates very toxic gas.

State	Divided solid	Molecular Weight	204.62
Melting Range (°F)	338- 347 (decomp)	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Gold powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Contact with acids produces toxic fumes
- Nitriles may polymerize in the presence of metals and some metal compounds.
- They are incompatible with acids; mixing nitriles with strong oxidizing acids can lead to extremely violent reactions.
- Nitriles are generally incompatible with other oxidizing agents such as peroxides and epoxides.
- The combination of bases and nitriles can produce hydrogen cyanide. Nitriles are hydrolyzed exothermally in both aqueous acid and base to give carboxylic acids (or salts of carboxylic acids).
- · Nitriles can react vigorously with reducing agents.
- The covalent cyano group is endothermic and many organic nitriles are reactive under certain conditions; N-cyano derivatives are reactive or unstable.
- The majority of endothermic compounds are thermodynamically unstable and may decompose explosively under various circumstances of initiation.
- Many but not all endothermic compounds have been involved in decompositions, reactions and explosions and, in general, compounds with significantly positive values of standard heats of formation, may be considered suspect on stability grounds.
 BRETHERICK L.: Handbook of Reactive Chemical Hazards.

Avoid storage with reducing agents.

· Avoid strong acids, bases.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

carbonyl cyanide m-chlorophenylhydrazone

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

OXICITY IRRITATION

Intraperitoneal (mouse) LD50: 8 mg/kg

Nil Reported

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

SKIN

carbonyl cyanide m- chlorophenylhydrazone	US - Washington Permissible exposure limits of air contaminants - Skin	Skin	X
carbonyl cyanide m- chlorophenylhydrazone	US - Hawaii Air Contaminant Limits - Skin Designation	Skin Designation	X
carbonyl cyanide m- chlorophenylhydrazone	US OSHA Permissible Exposure Levels (PELs) - Skin	Skin Designation	X
carbonyl cyanide m- chlorophenylhydrazone	US - California Permissible Exposure Limits for Chemical Contaminants - Skin	Skin	Х
carbonyl cyanide m- chlorophenylhydrazone	US - California Permissible Exposure Limits for Chemical Contaminants - Skin	Skin	s

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

CARBONYL CYANIDE M-CHLOROPHENYLHYDRAZONE:

■ On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

■ Soil Guidelines: Dutch Criteria: free cyanide: 1 mg/kg (target)

20 mg/kg (intervention) complex cyanide (pH 5): 5 mg/kg (target)

50 mg/kg (intervention)

Air Quality Standards: no safe guidelines recommended due to carcinogenic properties.

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient		Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
carbonyl chlorophenylhydra	cyanide azone	^{m-} HIGH		LOW	MED

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

_	_	_	_
ı١	•	١	

Symbols:	None	Hazard class or Division:	6.1
Identification Numbers:	UN2811	PG:	II
Label Codes:	6.1	Special provisions:	IB8, IP2, IP4, T3, TP33
Packaging: Exceptions:	153	Packaging: Non-bulk:	212
Packaging: Exceptions:	153	Quantity limitations: Passenger aircraft/rail:	25 kg
Quantity Limitations: Cargo aircraft only:	100 kg	Vessel stowage: Location:	В
Vessel stowage: Other:	None	S.M.P.:	YES
Hazardous materials description	ons and proper shipping names:		

Toxic solids, organic, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	2811	Packing Group:	II
Special provisions:	Δ3		

Shipping Name: TOXIC SOLID, ORGANIC, N.O.S. *(CONTAINS CARBONYL CYANIDE M-CHLOROPHENYLHYDRAZONE)

Maritime Transport IMDG:

IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	2811	Packing Group:	II
EMS Number:	F-A,S-A	Special provisions:	274
Limited Quantities:	500 g		

Shipping Name: TOXIC SOLID, ORGANIC, N.O.S.(contains carbonyl cyanide m-chlorophenylhydrazone)

Section 15 - REGULATORY INFORMATION

carbonyl cyanide m-chlorophenylhydrazone (CAS: 555-60-2) is found on the following regulatory

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-24-2009 Print Date:Apr-21-2010