p-Aminobenzoic acid, Free Acid

sc-208143

The Power to Questio

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

p-Aminobenzoic acid, Free Acid

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM BILLITY HEALTH AZARD INST BLITY

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Dye intermediate, pharmaceuticals, nutrition, UV absorber in suntan lotions.

SYNONYMS

C7-H7-N-O2, NH2C6H4CO2H, "aminobenzoic acid", "gamma-aminobenzoic acid", "4-aminobenzoic acid", 1-amino-4-carboxybenzene, p-carboxyaniline, 4-carboxyaniline, p-carboxyphenylamine, "benzoic acid, p-amino-", "benzoic acid, 4-amino-", PABA, Amben, "Anticanitic Vitamin", "Anti-Chromotrichia Factor", "Bacterial Vitamin H1", "Chromotrichia Factor", Pabanol, Paraminol, Paramate, Sunbrella, "Trichochromogenic Factor", "Vitamin BX", "Vitamin H""

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		Min/Nil=0
Body Contact:	2		Low=1 Moderate=2
Reactivity:	1		High=3
			Extreme=4

Chronic:

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful if swallowed.

May cause SENSITIZATION by inhalation and skin contact.

Possible risk of irreversible effects.

Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- In the treatment of rickettsial diseases, the initial oral dose of p-aminobenzoic acid (PABA) was 4000-8000 mg/kg with additional doses of 2000 mg every 2 hour, to maintain a blood concentration of 10-20 mg/100 ml, until normal temperature could be maintained for 24 hours. This regime tended to produce a decrease in white cell count (leucopenia) while higher doses produced delirium.

Prophylactic doses of 500 to 1000 mg/day PABA produced no apparent side-effects. Clinical use of PABA at doses of 10000 mg/day or more have produced nausea, vomiting, acidosis, pruritus, rash, fever, methaemoglobinaemia and, possibly, hepatitis.

■ The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure.

At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dysonea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal.

FYF

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- \blacksquare The material may accentuate any pre-existing dermatitis condition.
- Case reports have appeared in the literature suggesting that p-aminobenzoic acid (PABA) may produce photoallergic as well as contact allergic responses. Upon application PABA diffuses into the stratum cornea reaching its maximum concentration within 2 hours; it does not, however, penetrate much deeper.

In bioassays designed to examine the potential for contact sensitisation there have been mixed results. One researcher was not able to produce delayed contact hypersensitivities in guinea pigs in the Magnussen Kligman maximisation test, in a modified Draize test or in a single injection adjuvant test. Another, however, produced sensitisation responses in 33% of animals in the maximisation test (5 responders in 15 test animals).

Mixed results have been produced in bioassays for photoallergic potential. One study with guinea pigs could not produce evidence supporting this proposition whilst another showed photoallergic and persistent light reactions.

- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHAL ED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems

Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro

mutagenicity studies.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Chronic feeding studies indicate rats are resistant to p-aminobenzoic acid (PABA) with acute gastroenteritis and haemorrhage of the small intestine capillaries being involved in any toxic effect. Acute necrosis of the liver occurred in some dogs during feeding trials.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
NAME	CAS RN	%		
p-aminobenzoic acid	150-13-0	> 99		

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- The material may induce methemoglobinemia following exposure.
- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comment
1. Methemoglobin in blood	1.5% of hemoglobin	During or end of shift	B, NS, SQ

B: Background levels occur in specimens collected from subjects NOT exposed

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Not applicable.		
Upper Explosive Limit (%):	Not Available		
Specific Gravity (water=1):	1.37		
Lower Explosive Limit (%):	Not Available		

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

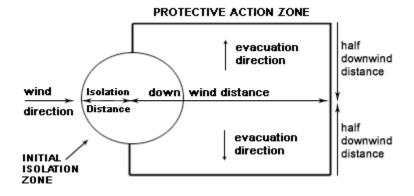
Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.


NS: Non-specific determinant; also observed after exposure to other materials

Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance Downwind Protection Distance -

From US Emergency Response Guide 2000 Guide No guide found.

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

Avoid all personal contact, including inhalation.

- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US AIHA Workplace Environmental Exposure Levels (WEELs)	p-aminobenzoic acid (para- Aminobenzoic Acid)		5						

MATERIAL DATA

P-AMINOBENZOIC ACID:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically

occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

for p-aminobenzoic acid (PABA)

CEL TWA: 5 mg/m3 (compare WEEL TWA)

Clinical doses of 500 mg/day produce no apparent side-effects. Excretion is rapid. Dermal absorption through intact skin appears unlikely. PABA has a potential to produce contact- or photo-sensitisation, albeit low. One manufacturer has commented upon the fact that PABA dusts produce respiratory irritation. At the workplace environmental exposure level (WEEL) recommended by the AIHA there would be a maximum uptake of 10% of the low prophylactic dose, even if absorption following inhalation was 100%. The WEEL is thought to be protective against respiratory irritation.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

•

Overalls.

- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These
 may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part
 of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
 Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant: Air Speed:

direct spray, spray painting in shallow booths, drum filling,

conveyer loading, crusher dusts, gas discharge (active generation 1-2.5 m/s (200-500 f/min.)

into zone of rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

State	Divided solid	Molecular Weight	137.15
Melting Range (°F)	366.8- 370.4	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Available	pH (1% solution)	3.5
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	1.37
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Light buff odourless needle like crystals or powder; white when pure. Discolours on exposure to light and air. Sparingly soluble in cold water, soluble in hot water, glacial acetic acid, ethyl acetate.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective.
- Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

P-AMINOBENZOIC ACID

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: >6000 mg/kg Nil Reported

Oral (Mouse) LD50: 2850 mg/kg *
Intraperitoneal (Rat) LD50: >3450 mg/kg

Oral (Dog) LD50: 1000 mg/kg

Oral (Rabbit) LD50: 1830 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins.

Attention should be paid to atopic diathesis, characterized by increased susceptibility to nasal inflammation, asthma and eczema.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

for p-aminobenzoates (PABA and its derivatives):

PABA (p-aminobenzoic acid; syn: 4-aminobenzoic acid) is a chemical found in the folic acid vitamin and also in several foods including grains, eggs, milk, and meat.

PABA is taken by mouth for skin conditions including vitiligo, pemphigus, dermatomyositis, morphea, lymphoblastoma cutis, Peyronie's disease, and scleroderma. PABA is also used to treat infertility in women, arthritis, anaemia), rheumatic fever, constipation, systemic lupus erythematosus (SLE), and headache. It is also used to darken gray hair, prevent hair loss, make skin look younger, and prevent sunburn. PABA and its derivatives is best known as a sunscreen that is applied to the skin. Local anesthetics used in temporary pain relief are often derivatives of PABA (e.g. benzocaine).

PABA reportedly enhances the effects of cortisone, oestrogen, and other hormones It prevents accumulation of abnormal fibrous tissue. PABA enables intestinal bacteria to produce folic acid. It functions in the breakdown and utilisation of proteins and in the formation of blood cells.

Human overdose data on PABA or its esters are rare. Most toxicology data are derived from animal experimentation or chronic, large dose therapeutic use. Nausea, vomiting, and abdominal cramps as well as metallic taste are often seen with oral therapy. Ingestions of more than 10 grams per day for days have been necessary to induce symptoms other than local gastrointestinal irritation. Clinical use of PABA at doses of 10 grams per day or more have produced nausea, vomiting, acidosis, pruritus, rash, fever, methaemoglobinaemia and, possibly, hepatitis.

This regime tended to produce a decrease in white cell count (leucopenia) while higher doses produced delirium.

Chronic feeding studies indicate rats are resistant to p-aminobenzoic acid with acute gastroenteritis and haemorrhage of the small intestine capillaries being involved in any toxic effect. Acute necrosis of the liver occurred in some dogs during feeding trials.

PABA is an essential nutrient for some bacteria and is sometimes called Vitamin B x . However, PABA is not essential for humans and it varies in its activity from other B vitamins. Although humans lack the ability to synthesise folate from PABA, it is often sold, misleadingly, as an essential nutrient. PABA is sometimes included in multi-vitamin preparations; adverse effects from oral doses have not been reported at lower doses.

Derivatives of PABA, have been associated with acute allergic reactions. As sunscreens PABA derivatives have reportedly produced allergic contact dermatitis; although transient this effect may be severe compounding the phototoxicity for which it is applied. PABA or other related substances are also capable of inducing photoallergic reactions or systemic lupus erythematous. In the past, PABA has been widely used as UV filter in sunscreen formulations. However, it has been determined that it increases the risk of DNA damage and risk of skin cancer. Other derivatives of PABA, such as octyl dimethyl PABA (padimate(s) A and O) are more commonly used so their safety has been brought into question as well.

In bioassays designed to examine the potential for PABA contact sensitisation there have been mixed results. One researcher was not able to produce delayed contact hypersensitivities in guinea pigs in the Magnussen Kligman maximisation test, in a modified Draize test or in a single injection adjuvant test. Another, however, produced sensitisation responses in 33% of animals in the maximisation test (5 responders in 15 test animals).

Mixed results have been produced in bioassays for photoallergic potential. One study with guinea pigs could not produce evidence supporting this proposition whilst another showed photoallergic and persistent light reactions

Aminobenzoic acid is chemically similar to other drugs that cause photosensitivity reactions in susceptible individuals including thiazides,

sulfonamides, sulfonylureas, furosemide, and carbonic anhydrase inhibitors. Cross-reactivity may also occur with benzocaine and p-phenylenediamine. Individuals who have had photosensitivity reactions while taking any of these drugs should not use a sunscreen containing aminobenzoic acid or one of its derivatives (aminobenzoate, menthyl anthranilate, or padimate A or O).

A nitrosamine known as NPABAO (2-ethylhexyl-4-(N-methyl-N-nitrosoamino)benzoate has been found in certain sunscreens containing padimate-O as the active ingredient. Nitrosamines themselves can be carcinogenic; however, at this time it is uncertain whether this nitrosamine is present in sufficient quantities in sunscreens to be of concern.

Padimate O absorbs ultraviolet rays, thereby preventing direct DNA damage by UV-B. However, the thus excited padimate O molecule can then react with DNA and produce indirect DNA damage, similar to the effects of ionizing radiation. A study in 1993 demonstrated the sunlight-induced mutagenicity of Padimate O The photobiological properties of padimate O resemble those of Michler's ketone which is considered photocarcinogenic in rats and mice. These findings suggest that padimate O might also be photocarcinogenic

Sulfonamides (sulfa drugs) are chemically similar to PABA, and their antibacterial activity is due to their ability to interfere with PABA utilization by bacteria. The chemically related 4-aminosalicylic acid, used as as an antibacterial has produced, allergic reactions are recorded in over 5% of adults treated with the sodium salt. Fever, athralgia, lymphadenopathy, and more rarely a syndrome resembling mononucleosis may also occur. Other (apparently) allergic reactions to aminosalicylate include jaundice, liver necrosis, pancreatitis, pulmonary infiltration, encephalitis, nephritis, and renal failure. Skin rashes often occurs after treatment Exfoliative dermatitis is common. The p-aminophenyl group formed during metabolism of aminosalicylate may provoke reaction in hypersensitive individuals (cross-sensitive) to sulfonamides, phenacetin, sulfones and to certain hair-dyes containing related compounds.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Mouse cell mutagen. Reproductive effector in rat

*Science Lab MSDS

CARCINOGEN

para-Aminobenzoic acid International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs Group 3

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

P-AMINOBENZOIC ACID:

■ log Pow (Verschueren 1983):

0.68

■ Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters.

All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water.

■ DO NOT discharge into sewer or waterways.

Nitrif. inhib.: nil at 100mg/L Anaerobic effects: sig degrad Degradation Biological: sig

Bacterial EC50 (30 min) Phytobacterium phosphoreum 27.4 mg/l

Microtox test: 15 C

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility p-aminobenzoic acid LOW Persistence: Air Bioaccumulation Mobility LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

Recycle wherever possible.

- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT. IATA. IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

p-aminobenzoic acid (CAS: 150-13-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "US - Minnesota Hazardous Substance List", "US AIHA Workplace Environmental Exposure Levels (WEELs)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-28-2009 Print Date:Sep-8-2010